Population initialization is one of the important tasks in evolutionary and genetic algorithms (GAs). It can affect considerably the speed of convergence and the quality of the obtained results. In this paper, some heuristic strategies (procedures) for construction of the initial populations in genetic algorithms are investigated. The purpose is to try to see how the different population initialization strategies (procedures) can influence the quality of the final solutions of GAs. Several simple procedures were algorithmically implemented and tested on one of the hard combinatorial optimization problems, the quadratic assignment problem (QAP). The results of the computational experiments demonstrate the usefulness of the proposed strategies. In addition, these strategies are of quite general character and may be easily transferred to other population-based metaheuristics (like particle swarm or bee colony optimization methods).
The paper proposes a technology for mass optimization of two-dimensional body applying genetic algorithms. Main attention is focused on geometry of 2D body, i. e. search for optimal coordinates of body points. Direct analysis of 2D body – von Mises stress determination – is performed using original program based on finite element method. The set of design parameters contains the coordinates of body points in 2D space. The results of numerical experiments proved the proposed technology to be efficient tool for solution of 2D body mass optimization problem.