COMPUTATIONAL SCIENCE AND TECHNIQUES Publisher: Klaipéda University
Volume 8, 2021, 631-638 https://e-journals.ku.lt/journal/csat
Online ISSN: 2029-9966

DOI: 10.15181/csat.v8.2103

TASK STALLING FOR A BATCH OF TASK MAKESPAN MINIMISATION IN
HETEROGENEOUS MULTIGRID COMPUTING

Albertas Jurgelevicius', Leonidas Sakalauskas?, Virginijus Marcinkevicius®
'albertas.jurgelevicius@mif.vu.lt
Institute of Data Science and Digital Technologies, Vilnius University, Lithuania
*Vilnius Gediminas Technical University, Lithuania,
Institute of Data Science and Digital Technologies, Vilnius University, Lithuania
‘Institute of Data Science and Digital Technologies, Vilnius University, Lithuania

Abstract. This paper presents a new algorithm for a batch of task makespan minimisation
in heterogeneous multigrid computing. Heterogeneous grids are known to cause straggling
task problem that increases task execution makespan. Existing task distribution algorithms
solve this problem by using information about the compute node capacities or task sizes.
However, such information may not always be available. Task stalling solves both problems.
However, this method is described for queuing systems consisting of only two heterogeneous
servers or grids. Our proposed algorithm is based on an improved task stalling method,
allowing it to distribute tasks in systems consisting of two or more grids. Experiment results
show reduced task execution makespan by up to 19,92% compared to FIFO. This allows us
to conclude that the new algorithm is suitable for a batch of task makespan minimisation in
heterogeneous multigrid computing.

Keywords: heterogeneous multigrid computing, a batch of task makespan minimisation,
scheduling algorithm

1. Introduction

The demand for computing resources in businesses companies is significantly increasing
since the introduction of the Internet of Things and smart technologies. Computing in
modern businesses is usually limited to the resources of available servers or cloud computing
services. However, research shows that a significant part of their internal computing resource
capacity is only lightly loaded. Since there are no distributed computing platforms designed
for companies to use all available computing resources, this causes the inefficient use of their
information technologies.

In this paper, we present a new algorithm for distributing tasks in heterogeneous hybrid
distributed computing platforms. The proposed algorithm minimises task execution
makespan by using the task stalling method. This method performs straggling task mitigation.
The straggling task problem is one of the main reasons preventing business companies from
using all internal computing resources [1]. The task stalling method does not use or require
information about compute node capacities or task sizes. However, this method is described
for queuing systems consisting of only two heterogeneous servers or grids. The proposed

631

http://journals.ku.lt/index.php/CST/issue/view/1

Jurgelevitius et al., Task Stalling for a Batch of Task Makespan Minimisation in Heterogeneous
Multigrid Computing

algorithm is based on a modified version of the existing task stalling method to support
systems consisting of two or more grids.

This paper is structured as follows. Section 2 presents related work and outlines the
novelty of our proposed algorithm. Section 3 explains the task stalling method and presents
the proposed algorithm. Section 4 contains experiments. Finally, experiment results are
concluded in Section 5.

2. Related Work

Hybrid distributed computing solutions combine public and private computing grids to
improve computation efficiency and reliability [2]. Tasks between private and public grids
can be distributed using various existing task distribution algorithms (see Table 1). However,
our review showed that all existing task distribution methods use information about the batch
of task size, estimated task execution times, computational resource capacity. This data is
used to schedule tasks. However, in a heterogeneous environment, these parameters are
constantly changing or cannot be estimated. This means that in such a case, existing solutions

cannot be used.

Table 1. List of related works.

Algorithm Year Method Optimisation criteria
Topcuoglu, H. et | 2002 | The highest priority tasks are assigned to Makespan minimisation.
al. [3] recourses that can soonest deliver the
results.
Bittencourt, L. F. | 2011 | Improved HEFT [3] algorithm. Makespan minimisation, task
et al. [4] completion within the deadline.
Bittencourt, L. F. | 2012 | The optimisation is done using linear Makespan minimisation, task
etal. [5] programming. completion within the deadline.
Vecchiola, C., et 2012 Created an algorithm that assigns more Task completion within the deadline.
al. [6][7] recourses to slow running tasks.
Van den Bossche, 2013 Created rules defining which task Makespan minimisation, task
R. et al. [8] distribution algorithm to use. completion within the deadline.
Duan,R.etal. [9] | 2014 | The optimisation is done using game Makespan and cost minimisation.
theory.
Wang, B. et al. | 2016 | Created a new algorithm that distributes Resource utilisation.
[10] tasks based on calculation cost to
efficiency ratio.
Zhang, Y. et al. | 2017 | Improved PSO algorithm. Task completion within the deadline,
[11] cost minimisation.
Abdi, S. etal. [12] 2017 The optimisation is done using linear Makespan minimisation, task
programming. completion within the deadline.

Zhang, Y. et al. | 2019 | The optimisation is done using “Firefly” Makespan and cost minimisation.
[13] algorithm.

Zhang, Y. et al. 2019 Created a new algorithm for task re- Makespan and cost minimisation.
[14] distribution.

Stavrinides, G. L. 2021 Improved Min-Min and Min-Max Task completion within the deadline,
et al. [2] algorithms [15][16]. cost minimisation.

632

Computational Science and Techniques, Vol 8, 2021, 631-638

3. Task Stalling buffer

Task stalling buffer [17] reduces task execution makespan in queuing systems consisting

of two heterogeneous servers (see Figure 1). It reduces slow server load by distributing a larger

part of the incoming new tasks to the fast server. If the fast server is not available, then tasks

are added to the task stalling buffer. If the task stalling buffer is full, then tasks are distributed

to the slow channel. For example, such a queuing system can be used to distribute tasks

between private and public grids (company servers and desktop computers). Task stalling

buffer length K can be calculated using equations from 1 to 5 [17].

M K m
—-IIIIIFQHIIII*@

“2@

Figure 1. Queuing system with task stalling buffer [17], where 1 is the fast server and 2 is the slow

server. Variable definitions are presented in Table 2.

Table 2. Variable descriptions.

Variable Description
M Task waiting buffer length.
K Task stalling buffer length.
1 Fast channel efficiency.
Uy Slow channel efficiency.
r Efficiency ratio between fast and slow
channels.
q Task execution efficiency coefficient.
c The number of completed tasks.
t Sum of task execution times.
m The number of nodes in the fast channel.
a, The number of completed tasks by the fast
channel.
by Time required to complete tasks by the fast
channel.
a, The number of completed tasks by the slow
channel.
b, Time required to complete tasks by the slow
channel.

K=r-(1-q), (1)
r=48 ()

K
q= t-n:-ul , 3)
fy = Z—i, (4)
Uy = Z—z. 5)

633

Jurgelevitius et al., Task Stalling for a Batch of Task Makespan Minimisation in Heterogeneous
Multigrid Computing

Algorithm 1: task distribution

Input: A bag-of-task job | = {t,t, ..., ty,} of m tasks

Output: none

clusters « order clusters by each cluster's ef ficiency u; (1 < i < n)
lengths < calculate buf fer length k; for each buffer b; (1 <i< n)

. foreachtaskt; €] do
repeat
for each cluster c; € clusters do
if cluster n; accepts new tasks then
schedule task t; to cluster n;
elseif i < n and number of tasks in buffer b; < k; then
10. add task t; to buf fer b;
11. endif
12. end for
13. until task t; is distributed
14. end for

0 0N AW e

Similarly, task stalling buffer can be used in systems with more than two channels (see
Figure 2). For example, such a queuing system can be used to distribute tasks between
multiple private and public grids (company servers, cloud services and desktop computers).
Task stalling reduces task execution makespan the most when the performance difference
between two grids is the largest [17]. In a system withn (n > 1) grids, tasks must be
distributed between the slowest grid (the slow channel) and the rest of n — 1 grids (the fast
channel). This means that equation no. 1 can still be used for calculating the buffer length K
(see Algorithm 1). This process can be illustrated using Figure 2. Here, “Grid no. 17 (the
slow channel) performs computations the slowest of all grids, whereas “Grid no. 3” performs
computations the fastest. “Grid no. 2”7 performs computations slower than “Grid no. 3” but
faster than “Grid no. 17. If “Grid no. 3” is busy, new tasks are distributed to the task stalling
buffer K2 (the buffer length is calculated using equation no. 1). If the task stalling buffer K2
is full, tasks are distributed to “Grid no. 2”. If “Grid no. 2” is busy, new tasks are distributed
to the task stalling buffer K1 (the buffer length is calculated using equation no. 1). If the task
stalling buffer K1 is full, tasks are distributed to “Grid no. 1”. If “Grid no. 17 is busy, new
tasks are stored in the waiting buffer until tasks can be distributed either to the task stalling
buffer K1 or “Grid no. 1.

634

Computational Science and Techniques, Vol 8, 2021, 631-638

K1 K2
ﬁlllﬁﬁlllﬁlll\
Grid no. 1 Grid no. 2 Grid no. 3

@, O O

Figure 2. Task stalling buffer in a queuing system consisting of 3 grids.

4. Experiment

The purpose of the experiment is to check the hypothesis that the proposed task
distribution algorithm reduces the task execution makespan more than the standard FIFO
(first in, first out), also known as FCES (first come, first served) algorithm. Experiment results
are tested against FIFO, since there are no other suitable task distribution methods (as
discussed in Section 2). Tests are executed using our created virtual environment for
simulating grids (developed using PHP programming language). Furthermore, the following
algorithm modifications are tested:

a) Static length task stalling buffer. Buffer length is calculated only once.

b) Dynamic length task stalling buffer. Buffer length is re-calculated after each new task

is submitted to the system.

Pre-generated scenarios (see Table 3) are used in experiments to compare task execution
makespan between different algorithms. Scenarios are based on the following two parameters:
task size and task start time. Both parameters are measured in iterations (pseudo-operations).
All scenarios are configured to induce a reasonable system load. In this case, the task stalling
buffer should not constantly be empty or full. Otherwise, one of the following scenarios
would occur:

a) All of the tasks would be redirected to the fast channel, and the system would be
underutilised.

b) All of the tasks would be redirected to the slow channel, and the task stalling method
would behave exactly like the FIFO algorithm.

Various cluster configurations (see Table 4) were used to test how the algorithms would
perform in various environments. Experiment no. 1 and 2 executes using all possible batch
of task sizes, ranging from 10 to 100 tasks. Experiment no. 3 executes using all possible batch
of task sizes, ranging from 40 to 400 tasks. After each experiment, results from each scenario
are aggregated. All agents in Cluster D have 1000 iteration task start penalty (simulating
virtual machine load time).

Experiment results show (see Figures 3 and 4) that the dynamic size task stalling buffer
reduces task execution makespan in all scenarios compared to FIFO. Static size task stalling
buffer in TS_STS scenario increased task execution makespan by 3.05% compared to FIFO,
because slow channel recourses were underutilised due to the static buffer size.

635

Jurgelevitius et al., Task Stalling for a Batch of Task Makespan Minimisation in Heterogeneous

Multigrid Computing

Table 3. Annotations used to define the experiment scenarios.

Notation Description
TS Static size tasks. All tasks are of the same size (200 iterations).
™D Dynamic size tasks. Generated task sizes are distributed using Poisson distribution (4 =
200).
STS Static intensity stream. The delay between each task start time is 8 iterations.
DTS Dynamic intensity stream. The delay between each task start time is generated using
Poisson distribution (1 = 8).
TS_STS Static size tasks (TS), static intensity stream (STS). Queuing system is sent uniform tasks in
equal intervals.
TS_DTS Static size tasks (TS), dynamic intensity stream (DTS). Queuing system is sent uniform
tasks in varying intervals.
TD_STS Dynamic size tasks (TD), static intensity stream (STS). Queuing system is sent varying size
tasks in equal intervals.
TD_DTS Dynamic size tasks (TD), dynamic intensity stream (DTS). Queuing system is sent varying
size tasks in varying intervals.

Table 4. Experiment cluster configurations.

Cluste Experiment no. 1 Experiment no. 2 Experiment no. 3
r
A 2 agents. 2 agents. 5 agents.
B 2 agents, that are 3 times | 2 agents, that are 6 times slower | 5 agents, that are 3 times
slower than agents in cluster A. | than agents in cluster A. slower than agents in cluster A.
C 2 agents, that are 9 times | 2 agents, that are 6 times slower | 5 agents, that are 6 times
slower than agents in cluster A. | than agents in cluster A. slower than agents in cluster A.
D 2 agents, that are 27 times | 2 agents, that are 27 times | 20 agents, that are 27 times
slower than agents in cluster A. | slower than agents in cluster A. | slower than agents in cluster A.
12%
10%

8%

2%
-4%

6%
4%
i in
0%

TS_STS TS_DTS TD_STS TD_DTS

B Experimentno.1 M Experiment no. 2 Experiment no. 3

Figure 3 Task execution makespan reduction using static size task stalling buffer, compared to FIFO.

636

Computational Science and Techniques, Vol 8, 2021, 631-638

25%
20%
15%

10%

5%
o II m II H

TS_STS TS_DTS TD_STS TD_DTS

B Experimentno.1 M Experimentnr. 2 Experiment no. 3

Figure 4. Task execution makespan reduction using dynamic size task stalling buffer, compared to FIFO.

5. Conclusions

Experiment results showed that the proposed algorithm with dynamic task stalling buffer
reduces task execution makespan up to 19,92% compared to FIFO. The proposed algorithm works
best when the incoming new task stream is static. Experiment results showed that the dynamic
length task stalling buffer performs better than the static length task stalling buffer. This allows us
to conclude that the new algorithm with dynamic length task stalling buffer should be used for a
batch of task makespan minimisation in heterogeneous multigrid computing, where no
information about the tasks or the compute nodes is available.

References

1. Gill, S. S., Ouyang, X., Garraghan, P., Tails in the cloud: a survey and taxonomy of
straggler management within large-scale cloud data centres. The Journal of
Supercomputing, 2020, vol. 76, 10050-10089. DOI: 10.1007/s11227-020-03241-x.

2. Stavrinides, G. L., Karatza, H. D., Dynamic scheduling of bags-of-tasks with sensitive
input data and end-to-end deadlines in a hybrid cloud. Multimedia Tools and
Applications, Springer, 2021, vol. 80, 16781-16803.

3. Topcuoglu, H., Hariri S., Wu M.-Y., Performance-effective and low-complexity task
scheduling for heterogeneous computing. Transactions on Parallel and Distributed
Systems, IEEE , 2002, 13(3), 260-274.

4. Bittencourt, L. F., Madeira, E. R. M., HCOC: A cost optimization algorithm for
workflow scheduling in hybrid clouds. Journal of Internet Services and Applications,
2011, vol. 2, 207-227.

5. Bittencourt, L. F., Madeira, E. R. M., Fonseca, N., Scheduling in Hybrid Clouds. IEEE
Communications Magazine, 2012, vol. 50.

6. Calheiros, R. N., Vecchiola, C., Karunamoorthy, D., Buyya, R., The Ancka platform
and QoS-driven resource provisioning for elastic applications on hybrid Clouds. Future
Generation Computer Systems, 2012, 28(6), 861-870, DOI:
10.1016/j.future.2011.07.005.

7. Vecchiola, C., Calheiros, R. N., Karunamoorthy, D., Buyya, R., Deadline-driven

provisioning of resources for scientific applications in hybrid clouds with Aneka. Future

637

Jurgelevitius et al., Task Stalling for a Batch of Task Makespan Minimisation in Heterogeneous

10.

11.

12.

13.

14.

15.

16.

17.

Multigrid Computing

Generation Computer Systems, 2012, 28(1), 58-65, DOLI:
10.1016/j.future.2011.05.008.

Van den Bossche, R., Vanmechelen, K., Broeckhove, J., Online cost-efficient scheduling
of deadline-constrained workloads on hybrid clouds. Future Generation Computer
Systems, 2013, 29(4), 973-985.

Duan, R., Prodan, R., Li, X., Multi-Objective Game Theoretic Schedulingof Bag-of-
Tasks Workflows on Hybrid Clouds. Transactions on Cloud Computing, 2014 IEEE,
vol. 2, 29-42, DOI: 10.1109/TCC.2014.2303077.

Wang, B., Song, Y., Sun, Y., Liu, J., Managing Deadline-Constrained Bag-of-Tasks Jobs
on Hybrid Clouds. Society for Computer Simulation International, 2016, USA.
Zhang, Y., Sun,]., Novel efficient particle swarm optimization algorithms for solving
QoS-demanded bag-of-tasks scheduling problems with profit maximization on hybrid
clouds. Concurrency and Computation: Practice and Experience, 2017, vol. 29.

Abdi, S., PourKarimi, L., Ahmadi, M., Zargarid, F., Cost minimization for deadline-
constrained bag-of-tasks applications in federated hybrid clouds. Future Generation
Computer Systems, 2017, vol. 71, 113-128.

Zhang, Y., Zhou, J., Sun, L., Mao, J., Sun, J., A Novel Firefly Algorithm for Scheduling
Bag-of-Tasks Applications Under Budget Constraints on Hybrid Clouds. IEEE Access,
2019, vol. 7, 151888-151901, DOI: 10.1109/ACCESS.2019.2948468.

Zhang, Y., Zhou,]., Sun,]J., Scheduling bag-of-tasks applications on hybrid clouds
under due date constraints. Journal of Systems Architecture, 2019, vol. 101, 101654,
DOI: 10.1016/j.sysarc.2019.101654.

Bhatia, M., Task Scheduling in Grid Computing: A Review, Advances in Computational
Sciences and Technology, ISSN 0973-6107, vol 10(6), 2017 pp. 1707-1714.

Dong, F., Akl, S.G., Scheduling algorithms for grid computing;: state of the art and open
problems. Technical Report No. 2006-504, School of Computing, Queen's University,
Kingston, Ontario, January 2006.

Kaklauskas, L., Sakalauskas, L., Denisovas, V., Stalling for solving slow server problem.
RAIRO - Operations Research, vol. 53 (4), July 2018, DOI: 10.1051/r0/2018056.

638

