COMPUTATIONAL SCIENCE AND TECHNIQUES Publisher: Klaipéda University
Volume 1, Number 2, 2013, 214-221 http://journals.ku.lt/index.php/CST
© Klaipéda University, 2013 Online ISSN: 2029-9966

PARALLEL COMPUTING FOR THE FINITE ELEMENT METHOD IN
MATLAB

Aurimas Simkus, Sigita Turskiené
Department of Informatics, Siauliai University, P. Viginskio St. 19, LT-77156, Siauliai
saurimas@hotmail.com, sigita@fm.su.lt

Abstract. In this research, parallel computing capabilities of MATLAB and the capabilities for
the finite element method were analyzed. A program for solving a heat transfer problem by the
finite element method was implemented. Three different parallel algorithms using CPU and GPU
for solving steady state and transient heat transfer problems were proposed and implemented. A
maximal speedup of around 2.3 times for steady state and 2 times for transient problem solving
time was achieved by using a quad-core CPU.

Keywords: parallel computing, finite element method, heat transfer problem, MATLAB.

Introduction

While a complexity of engineering and scientific research problems is increasing, a need
of computational resources of computers is increasing as well. An appropriate example for
this case is the finite element method (FEM) that is widely used in engineering (Lewis,
2004; Sergerlind, 1976). Sequential computing of such problems may be too expensive
even for modern computers if a fairly complex problem is needed to be solved. Parallel
computations can often reduce a computation time even if a single multicore computer is
used and increase an amount of available memory if a distributed system is used (Leopold,
2000). Furthermore, computer mathematic systems, such as MATLAB, that are oriented
for solving mentioned problems, support parallel computing (Martin, Sharma, 2009).

Although some researches have been done in this field, most of it did not cover a
comparative analysis of all capabilities for solving engineering problems by FEM in
computer mathematic systems. Kuczmann (2011) analyzed solution of two-dimensional
electrostatic field problem by diving the finite element mesh into equal sub-meshes for
parallel assembly. Hosagrahara, Tamminana and Sharma (2010) analyzed MATLAB
parallel computing capabilities for solving electrostatic field problem, however they applied
only one parallelization strategy (parallel loop). Butrylo B. et al. (2004) analyzed parallel
solvers for systems of linear equations in FEM for electromagnetic analysis. Cecka, Lew and
Darve (2011) analyzed multiple strategies for assembly and solving sparse linear systems
strategies in FEM by using Nvidia CUDA technology for GPU computing.

The main aim of the present paper is to analyze the parallel computing capabilities
(CPU and GPU) for FEM in MATLAB by implementing some parallel approaches for
solving the heat transfer problem.

Testing tools: MATLAB R2012b 64 bit, Parallel computing toolbox (PCT), quad-core
Intel i7 3630QM, 8 GB DDR3, and Nvidia GT640M 2 GB with 384 CUDA cores.

Simbkus and Turskiené, Parallel Computing for the Finite Element Method in MATLAB

1. Parallel computing concepts in MATLAB

Concepts of parallel computing have been reviewed in different scientific articles,
comparing both CPU and GPU (Kru$na, Denisov, 2013). Parallel computing in MATLAB
can be described in some different ways depending on a type of the parallelism generalized
in Figure 1 (Luszczek, 2009; Moler, 2007).

Types:
Implicit — Explicit

Hardware:

CPU — GPU — Distributed system

Figure 1. Parallelism in MATLAB.

Implicit parallel calculations are performed by MATLAB core-integrated parallel
functions which use parallel computer resources directly and automatically. Explicit parallel
constructs have to be formed explicitly by a programmer. These constructs are not included
in the core of MATLAB - they are implemented in MATLAB toolboxes. In this research,
Parallel Computing Toolbox (PCT) was used. GPU support is also implemented in PCT,
and is based on Nvidia CUDA (Reese, Zaranek, 2011).

When using explicit PCT constructs (e.g., parfor or spmd), a pool of MATLAB sessions
(matlabpool) for parallel computations should be initialized first. The pool uses a profile
which describes the workspace where parallel computations are performed. A local profile
for a single computer is set by default, but a distributed system (a cluster, a grid or a cloud)
profile can be set if MATLAB Distributed Computing Server (MDSC) is used. Up to 12
MATLAB computational engines (workers) can be initialized per single computer in the
pool (4 local workers were used for testing).

2. Parallel computing in the finite element method analysis

In FEM, two main components: matrix [K] and vector {F} are assembled before
calculating the answer of a problem (a temperature vector {I} in the case of the heat
transfer problem). It is called the assembly procedure where [K] is a global thermal
conductivity matrix and {F} is a global thermal vector. They both are assembled from

separate finite elements as shown in Figure 2 and are used in matrix equation

[KI-{T}={F}. (1)

215

Computational Science and Techniques, Vol 1, No 2, 2013, 227-234

ks, KS 0 0 0 0 £

K, [Ko+K: K&, | o 0 Fy +F2‘f1]
0 0 0 {Kifl,a +K§£,J K;E,z} Fipis+Fy

K 0 0 0| K, Kl Fie,

Figure 2. Example of [K] and {F} assembly (NE — number of the finite elements)

According to Figure 2, global matrix [K] and vector {F} are assembled from separate
elements {Fe} and [Ke] as well as their intersections. In the parallel part of this algorithm,
non-overlapping parts of these elements can be included into the global components. After
the parallel part, the intersections can be included as well. There are two possible types of
matrix [K] in FEM that are implemented in MATLAB. One of them is a full matrix and
another is a band (sparse) matrix. Only used (non-zero) elements are saved in the band
matrix.

In our solved heat transfer problem, the band matrix was used; however, the full matrix
can be used in some problems as well. Both types of matrices were compared by
consumptions of computer memory and solving time using a double-precision data type.

Table 1. Comparison of using full and band matrices with 15000 finite elements.

Type ([)Ifqmatrlx Size of [K] (KB) | Size of {F} (KB) | (1) solving time (s) | Assembly time (s)
Full 175805 117 19,981 0,130
Band 820 0,002 0,142
Difference (times): 214 - 9990 0,915

According to Table 1, the band matrix obviously saves a lot of computer memory and so
the problem is solved much quicker. Then, the matrix [K] and vector {F} assembly
procedure has to be parallelly computed (this strategy is analyzed in our paper in Section
3). Though MATLAB implicit parallelism was revealed to be actually not working
efficiently when the band matrix is used, it has a significant importance when the full
matrix is used (Table 2).

Table 2. Effect of implicit MATLAB parallelism when the full matrix [K] is used.

1 core 2 cores 3 cores 4 cores

10 000 FE (s) 16.5560 9.2100 7.3310 5.9560

3. Implementation of parallel algorithms
3.1. Parallel loop parfor

The most intuitive algorithm of the parallel assembly procedure was implemented by
using a parallel loop construct parfor. This construct was also discussed in the paper by

216

Simbkus and Turskiené, Parallel Computing for the Finite Element Method in MATLAB

Hosagrahara, Sharma and Tamminana (2010). Our implemented algorithm is shown in
Figure 3.

As shown in Figure 3 and discussed in Section 2, each finite element consisting of {Fe}
and [Ke] is computed separately in parallel loop iterations by independent MATLAB
workers.

parfor: 1.. NE ,

{Fe1), {F°2)}, {FeNE-1}, {F*nE},
[K#1] [K=2/ T [Kene1] [Kene]

!

[F} = {F?)} .. {F°ng) | <intersections>,
[K] = [Ke;] .. [Keng] | <intersections>
<Additional procedures>

Figure 3. Algorithm for the parallel assembly procedure using the parfor loop.

3.2. Construct of SPMD model

The second algorithm for the parallel assembly procedure was implemented by using
a spmd (Single Program Multiple Data computational model) construct (Figure 4).

spmd: 1 .. numlabs ’

a =1 + (labindex — 1) - NE / numlabs, Each worker

b =a + NE/numlabs - 1, assembles a .. b
{Fa} .. {F}, [K%] .. [K%] elements

|
{F} = {F*1} .. {F*\g} | <intersections=>,

Elements have to

[K] = [K°1] .. [K*z] | <intersections>, be retume(} from
<Additional procedures> labs to main
workspace first

®

Figure 4. Algorithm for the parallel assembly procedure using the spmd construct.

In this algorithm, computations of the assembly procedure are divided in a number of
MATLAB workers used. Each worker corresponds to a separate execution laboratory
(numlabs is a number of the laboratories, labindex is an identification of the laboratory).
Although spmd is less limited and has more control comparing to parfor, its composite data
structure consumes more computer resources. On the other hand, it is designed to
maintain data in distributed systems. It is possible to implement a similar procedure for the
parfor construction if no such data is needed.

3.3. Element-wise function arrayfun for GPU

217

Computational Science and Techniques, Vol 1, No 2, 2013, 227-234

An element-wise function arrayfun was used for GPU-based algorithm (Figure 5). This
function can be implemented for CPU as well, however, this case implementation has not
produced positive results and is not discussed further.

EData transfer to GP@

GPU and CPU in conjunction |

GPU: arrayfun
{F°13, {Fe), {F°ng1}, {F°NE), Eﬂdditianaf pracedure%
[Ke1] [Keo]) 0 \[Kenei]) \ [KeE]

|

<Data return from GPU=,
{F} = {Fe1} .. {F*xg} | <intersections>,
[K] = [K?1] .. [K®ng] | <intersections™>

®

Figure 5. Algorithm for the parallel assembly procedure using arrayfun for GPU.

In arrayfun, the assembly procedure is applied to each finite element. Since GPU and
CPU procedures are asynchronous, both of them may be computed in conjunction.

arrayfun for GPU also has a couple of significant limitations: only scalar data can be
computed and it is CUDA-based only.

4. Numerical results and discussion

Steady state and transient heat transfer problems were solved for testing the
implemented parallel assembly algorithms based on parfor and spmd (CPU), and arrayfun
(GPU).

T =150°C
__R, =13em

Y h=3

K. =420
” em-°C”’ cm- °C’

T.=40°C, pc=15 —
cm - °C

Figure 6. Model of the heat transfer problem.

218

Simbkus and Turskiené, Parallel Computing for the Finite Element Method in MATLAB

A one-dimensional variable cross-sectional area finite element was used for the
discretization of the structure shown in Figure 6. The temperature of the external
environment Teo was assumed to be changing in each time iteration in the transient
problem, hence vector {F} has to be reassembled every time. Comparative results of
speeding up the problem solving are further discussed in this section.

Steady state heat transfer problem solving times were measured by applying the
implemented parallel assembly algorithms based on parfor, spmd and arrayfun. The speedup

results are given in Figure 7.

g
tn
T

o
T

[_1cPu, parfor
I cPU, spmd
[GPU, arrayfun

tn
T

g
tn
T

Speedup comparing to a sequential computation

L

100 1000 10000 100000 1000000 50000000 10000000
Number of the finite elements

Figure 7. Comparison of the steady state problem solving times.

According to Figure 7, parallel assembly is inefficient for a small number of the finite
elements (FE). However, it can reduce the problem solving time more than twice when the
number of FE is big enough. Spmd-based algorithm failed for solving 10 million FE
problem due to a lack of the computer memory, which proves the drawback of using
composite data on a single computer. Because of limitations for solving FEM problem with
GPU arrayfun, its parallel results are not very significant but positive.

Transient heat transfer problem solving time results are given in Figure 8. The
implemented parallel assembly algorithms based on parfor, spmd and arrayfun were applied.
A sequential Crank-Nicolson algorithm (Sergerlind, 1976, p. 218-219) was used for the

time iterations.

na

l:|CPU, parfor
I cpu, spmd
-GPU, arrayfun

2

g
o

Speedup comparing to a sequential computation

[=]

10 100 300
Number of the time iterations

Figure 8. Comparison of the transient problem solving times for 1 million FE.

To solve the transient heat transfer problem, the heat capacity matrix [C] is needed. The
time results are quite similar for different numbers of time iterations (Figure 8). It produces
a slightly less speedup for more iterations, because matrices [K] and [C] are assembled only

219

Computational Science and Techniques, Vol 1, No 2, 2013, 227-234

once before iterations, and only vector {F} is reassembled over iterations. Maximal speedup
of around twice was achieved, but it should be bigger for a more dynamic problem.

Results of the implemented algorithms were also tested for an analytically and
Sergerlind’s (1976, p. 144-146) solved heat transfer problem solution to satisfy their
correctness. The solution of the algorithms converged similarly as solved in earlier research
for this problem (Simkus, Turskiené, 2013).

Conclusions

During the analysis of parallel computations for FEM, three MATLAB constructs were
used for implementation of algorithms for parallel assembly: parfor, spmd for quad-core
CPU, and arrayfun for GPU with 384 CUDA cores. The following conclusions correspond
to the analysis and results of 1-D heat transfer problem.

1. Comparative results revealed that the fastest implementation is the spmd-based
assembly algorithm with up to 2.3 times speedup for the steady state and up to 2 times
for the transient heat transfer problem solving time.

2. The parfor-based algorithm is the most intuitive to implement with up to 1.95 times
speedup for the steady state and up to 1.7 times for the transient problem solving time.

3. The GPU arrayfun-based algorithm is quite limited and not very effective (up to 1.15
times speedup for the steady state and up to 1.10 times for the transient problem
solving time) for parallelizing the assembly procedure at the moment.

For the future research, the implemented algorithms should be tested on Grid or Cloud.
More complex 2-D or 3-D finite element problems should be solved. A part of this research
was presented (Simkus, Turskiené, 2013).

References

Butrylo, B., Musy, F., Nicolas, L., Perrussel, R., Scorretti, R., Vollaire, C. (2004). A Survey of
Parallel Solvers for the Finite Element Method in Computational Electromagnetics. The
International Journal for Computation and Mathematics in Electrial and Electronic
Engineering, 23 (2), 531-546.

Cecka, C., Lew, A.]., Darve, E. (2011). Assembly of the Finite Element Methods on Graphics
Processors. International Journal for Numerical Methods in Engineering, 85 (5), 640-669.

Hosagrahara, V., Sharma, G., Tamminana, K. (2010). Accelerating Finite Element Analysis in
MATLAB with Parallel Computing. The MathWorks News and Notes. Available from:
hetp://www.mathworks.com/tagteam/66859_91826v00_FEM_final.pdf [Accessed: 22 July
2013].

Krusna, D., Denisov, V. (2013). General Purpose Parallel Programing Using New Generation
Graphic Processors: CPU vs GPU Comparative Analysis and Opportunities Research.
Computational Science and Techniques, 1 (1), 36—44.

Kuczmann, M. (2011). Parallel Finite Element Method. Przeglad Elektrotechniczny (Electrical
Review), 12b, 100-102.

Leopold, C. (2000). Parallel and Distributed Computing: A Survey of Models, Paradigms and
Approaches. New York: Wiley.

Lewis, R. W., Nithiarasu, P., Seetharamu, K. N., (2004). Fundamentals of the Finite Element
Method for Heat and Fluid Flow. New York: Wiley.

220

Simbkus and Turskiené, Parallel Computing for the Finite Element Method in MATLAB

Luszczek, P. (2009). Parallel Programming in MATLAB. International Journal of High Performance
Computing Applications, 23 (3), 277-283.

Martin, J., Sharma, G. (2009). MATLAB: A Language for Parallel Computing. International
Journal of Parallel Programming, 37 (1), 3-36.

Moler, C. (2007). Parallel MATLAB: Multiple Processors and Multiple Cores. The MathWorks
News and Notes. Available from:
htep://www.mathworks.com/tagteam/42682_91467v00_NNR_Cleve_US.pdf [Accessed: 22
July 2013].

Reese, J., Zaranek, S. (2011). GPU Programming in MATLAB. The MathWorks News and Notes.
Available from: http://www.mathworks.com/tagteam/74240_91967v01_gpu-programming-in-
matlab. pdf [Accessed: 22 July 2013].

Sergerlind, L. J. (1976). Applied Finite Element Analysis. New York: Wiley.

Simkus, A., Turskiené, S. (2013). Comparative Analysis of Possibilities for Object-oriented
Programming in MATLAB Language. Jaunuju mokslininky darbai (Journal of Young
Scientists), 39 (1), 148-151.

Simkus, A., Turskiené, S. (2013). Parallel Computing for Finite Element Method in MATLAB. In:
NorduGrid 2013, Distributed Systems and Big Data — Towards New Horizons, 4—6 June 2013,
Siauliai, Lithuania. Available from:
http://indico.hep.lu.se//contributionDisplay. py?contribld=178&sessionld=0&confld=1273
[Accessed: 22 July 2013].

A. Simkus is a Bachelor of Computer Science currently seeking a Master’s Degree in
Software Engineering at Vilnius University in Lithuania. His main research field is in
computer modeling and parallel computing.

S. Turskiené is a Doctor of Technology Science and an Associate Professor of the
Department of Informatics at Siauliai University in Lithuania. Her main research field is in
computer modelling of systems.

LYGIAGRETIEJI SKAICIAVIMAI BAIGTINIY ELEMENTUY METODUI
MATLAB SISTEMA
Aurimas Simkus, Sigita Turskiené
Santrauka

Siame darbe buvo iganalizuotos lygiagre¢iy skai¢iavimy galimybés baigtiniy elementy metodui
MATLAB sistema. Sukurta programa Silumos pernesimo uzdaviniui spresti baigtiniy elementy
metodu. Pasialyti ir realizuoti trys skirtingi algoritmai skirti CPU ir GPU lygiagretinimui
sprendziant stacionaraus ir nestacionaraus $ilumos pernesimo uzdavinius. Maksimalus stacionaraus
proceso pagreitinimas iki 2.3 karto, nestacionaraus — iki 2 karty buvo pasiektas naudojant keturiy
branduoliy procesoriy.

Pagrindiniai zodZiai: lygiagretieji skai¢iavimai, baigtiniy elementy metodas, $ilumos pernesimo
uzdavinys, MATLAB sistema.

221

