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Abstract. A well-known example of global optimization that provides solutions within fixed error
limits is optimization of functions with a known Lipschitz constant. In many real-life problems this
constant is unknown. To address that a method called Pareto-Lipschitzian Optimization (PLO) was
described that provides solutions within fixed error limits for functions with unknown Lipschitz
constants. In this approach, a set of all unknown Lipschitz constants is regarded as multiple criteria
using the concept of Pareto Optimality (PO).

In this paper, a new version of the Pareto-Lipschitzian Optimization method (PLOR) is proposed
where a set of unknown Lipschitzian constants is reduced just to the minimal and maximal ones. In the
both methods, partition patterns are similar to those of DIRECT. The difference is in the rules of
sequential partitions defining non-dominated sets. In PLO, it includes all Pareto-Optimal sets defined
by all Lipschitz constants. In PLOR, it considers just two elements corresponding to the maximal and
minimal Lipschitz constant. in DIRECT, it selects a part of the Pareto-Optimal set which is determined

by some heuristic parameter €.
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Introduction

Since, PLOR is reduced version of PLO the description of PLOR approximately follows the
lines of the PLO description in (Mockus., 2011) with corresponding changes. In the following

sections we focus mainly on comparison of PLOR and DIRECT, since of PLO and DIRECT
was compared in (Mockus., 2011).

1. Worst Case Analysis

In terms of the decision theory the term “Worst Case Analysis” means that the method must
retain the exactness or €-exactness in all cases, including the worst one. To obtain the exact
solution in the worst case, one may need many iterations, if the family of problems is large. An
important advantage is a well-defined maximal deviation.

The well-known examples of Worst Case Analysis are optimization methods for the set of
Lipschitz functions with known Lipschitz constants, see, e.g. (Evtushenko, 1985), (Figueira,
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Greco, & Ehrgott, 2004), (Paulavicius & Zilinskas, 2007), (Paulavicius, Zilinskas, & Grothey,
2010), (Pijavskij, 1972), (Shubert, 1972). Here the deviation can be defined in terms of the
objective function:

R = [f(x) — fx)| < o I x—x" I, (1)

where w is the Lipschitz constant.
For a wider family of functions, such as Lipschitz functions with an unknown constant, only
the deviation in terms of function arguments can be ensured

K, =Il x — x* |I. )

In (Sukharev, 1971), the problem of global optimization for a family of Lipschitz functions
with unknown Lipschitz constants is considered. In this case, the uniform grid on a compact
feasible set is the optimal passive method, in the mini-max sense. The term “passive” means
that all the points of observations (x;) are determined at the start. The term “observation”
denotes an evaluation of the objective function f(x) at some fixed point X, and the term
"mini-max" means minimization of the maximal deviation. Here the number of required
observations will be exponentially increasing with the complexity of the problem. We define
the complexity as the number of variables and the accuracy of solutions (Ko, 1991).

The contribution of this paper is a definition of the problem of optimization with reduced
set of Lipschitz constants in terms of Pareto optimality and the Reduced Pareto-Lipschitzian
Optimization (PLOR) algorithm to realize this approach. Furthermore, advantages and
disadvantages of PLOR are compared to DIRECT algorithm (Jones, Perttunen, & Stuckman,
1993), which is a well-known active method for optimization of Lipschitz functions with
unknown constants. To increase the efficiency of search, the DIRECT algorithm uses heuristic
rules that depend on some manually chosen parameter €. The DIRECT algorithm considers a
subset of potentially optimal hyper-rectangles satisfying Definition 1.

Definition 1. Let S be the set of all hyperrectangles created by DIRECT after k iterations.
Let c; denote the center point of the ith hyperrectangle, and let d; denote the distance from center
point to the vertices. Let € > 0 be a positive constant and [y be the currently known best
function value. A hyperrectangle S; € S is said to be potentially optimal if there exists some
rate-of-change constant K >0 such that

f(c;) — Kd; < f(¢;) —Kd;, Vi€S 3)
(;) — Rd; < fmin — &lfiminl. @

Different versions of DIRECT (Finkel & Kelley, 2006; Jones, Perttunen, & Stuckman,
1993), (Gablonsky & Kelley, 2001), (Jones, Perttunen, & Stuckman, 1993), (Sergeyev &
Kvasov, 2006) regard different subsets of non-dominated decisions determined by the
corresponding heuristics. Non-dominated decisions means that there exists no decision which
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is as good by all criteria and better by at least one criteria. Different criteria are defined by
different Lipschitz functions. The non-dominated decisions are part of all Pareto ones. The
main theoretical difference of DIRECT and Pareto-Lipschitzian (PL) algorithms is that PL
considers all the Pareto Optimal decisions while DIRECT regards only a part of them with
further filtering by some heuristic rule.

The difference between different versions of Pareto-Lipschitzian algorithm is as follows.
PLO explores all PO decisions, and PLOR considers just two PO decisions defined by the
minimal and maximal Lipschitz constants correspondingly. In both PLO and PLOR no
heuristic parameters are applied. Exploration of all PO decisions is particularly suitable for
parallel computations if the computing time of observations is sufficiently large. Otherwise,
PLOR is preferable as a sequential search procedure.

2. Pareto-Optimal Approach: Dominant Analysis

The concept of Pareto optimality (see, e.g., (Figueira, Greco, & Ehrgott, 2004) (Miettinen,
1999) (Pardalos & Siskos, 1995)) is traditionally used in the cases where an objective is a
vector-function  f,(x), w €EX. Here x € D € R is the control parameter, @ is a
component index of the vector-objective f,(x), and ¥ is a set of all components w.

Definition 2. The decision x € D dominates the decision x* € D, if

foX) < fo(x™), for all weNX 5)
fo(x) < fo(x™), for at least one w €.

Here D is the decision space and K is the set of components w.
Definition 3. The decision x* € D is called Pareto Optimal (PO) *, if there is no dominant
decision x € D.

3. Reduced-Set Pareto-Lipschitzian Optimization (PLOR)

We explain the PO optimization of Lipschitz functions with just two (the minimal ant the
maximal) constants by considering the following one-dimensional example.

Suppose that the interval D = [a, b] € R is partitioned into intervals [a;, b;], i =1,...,1
of lengths l; = b; — a; with midpoints ¢; = (b; + a;)/2 and the values f(c;) of the
function f,,(x) are known only at the midpoints ¢;. The unknown Lipschitz constants are
regarded as different components of multiple criteria. The variables x are represented by the
intervals a; < x < b; and the function f,,(x) is approximated by the lower bounds:

Li(w) = f(¢) —w /2 < f,(x), a; < x<b;. ©6)

' Here we consider minimization, while in maximization the inequalities should be reversed.
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Expression (6) shows that the lower bound of the interval i is increasing with f(c;) and
decreasing with [; for all w. We compare the “quality” of different intervals by their lower
bounds. For example, we say that the interval is better for a given w, if its lower bound is
lower.

Definition 4. The interval i:a; < x < b; that belongs to a compact set D € R dominates
the interval j:a; < x < b, if

Li(w) < Lj(w) for all w €K, (7)
Li(w) < Lj(w), for at least one w € K. (8)

Definition 5. The interval j:a; < x < b; that belongs to the compact set D C R is called
Pareto Optimal (PO) 2 if there is no dominant interval i defined by (7) and (8).

Assume that the minimal constant is @ = 0. This constant provides that the interval with
minimal f(c;) is in PO. The maximal constant is defined as a number at least as large that
just the longest interval is to be included into the PO set. This theoretical framework provides
that the reduced PO set includes just two intervals: one with the minimal observation, another
with the longest interval. The only exception is the case when there are more then two intervals
all with the minimal observed values and the maximal lengths. In such case PLOR select all of
them. The formal rule to select the intervals i which belong to the reduced PO set I is as

follows
iel if f(c) <f(q) or L =1 jjk=12,.. )
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Figure 1. Visual comparison of selection Pareto Optimal intervals using reduced Pareto (PLOR) and
Pareto (PLO) algorithms and selection of potentially optimal intervals using (DIRECT) algorithm.

? Here PO decisions are defined as indexes of PO intervals. In expression (22), PO decisions are expressed as continuous variables x.
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Figure 1 illustrates the PLOR expression (9), the PLO Definitions 4, 5, and the DIRECT
Definition 1. Each point on the graphs represents an interval’, where the horizontal axis
represents the distance from the center of the interval to one of its corners and on the vertical
axis the value of the function f evaluated at the interval’s center. The red (black, in
black-white) circles represent intervals which are selected by the corresponding algorithms and
will be divided in the next phase of the iteration of these algorithms.

4. Extension to several dimensions

We define the length I; of the closed K-dimensional interval [a¥,b¥] c [a¥,b*], k =

1,...,K as
l; = /Zk (192 (10)

where [F = b¥ — aF. The observation points ¢; are in the middle ¢ = (bF + a¥)/2, k =
1,...,K,

4.1. Sampling

The definition of PO intervals depends on @ which is unknown, so the rational strategy of
sampling (choosing the points where the objective function is to be evaluated) is to investigate
both the PO intervals.

To retain a symmetry, instead of picking one side of the PO interval, two additional
observations are made in the middle of two additional intervals, produced by dividing the
initial PO interval along the longest dimension into three equal parts. After the division, the
new two PO intervals are defined by the condition (9).

Figure 2 illustrates first four iterations of the PLOR algorithm by a two-dimensional
Shubert (Hedar, 2005) example. Each iteration i = 1,...,n includes the following tasks:

o The basic task is to make observations (calculations of f(c;) at fixed ¢;). The dots in
the figure show the observation points, the accompanying numbers are function values
on these points.

e An auxiliary task consists of four parts:

— Definition of the PO intervals. The red (different shade, in gray) indicate PO
rectangles in the current iteration by expression (9).

— Creating new intervals by splitting the current PO intervals along the longest
dimension. Figure 2 illustrates a specific situation when PLOR selects more than

two identical intervals with equal function values and lengths.

® The general term "interval", that means an interval in the k-dimensional space (k = 1,...,K), is used while explaining formulas. The term
"rectangle” explains pictures better.
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— Defining new observation points in the middle of the new intervals.
— Keeping the current best observation which will be accepted as the solution at the
end of the optimization process.
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using plor algorithm on Shubert test problem.

The algorithm stops when a point X is generated such that

or the number of generated intervals exceeds 500000. Here f(x) is the value of a test

f(X)—f*
[£*]

<1074

f(x) <107

f*#0
f*=0,

function in Table 1, at some fixed vector X of optimization variables.

4.2. Convergence

It follows from (9) that the set of PO intervals includes the longest interval. Thus, the

Figure 2. First four iterations of partitioning and selection of Pareto optimal intervals

(11)

longest intervals will be divided into three equal parts until they reach the error limit
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maxj=q_n 1/2 1 < g(n). (12)

This limit is reached after the finite number of partitions, since [a¥,b¥] c [a¥, b¥], k =
1,..., K. That proves the following proposition: For any & > 0 there exists a number n,
such that g(n) < g, if n > n,.

5. Experimental calculations, preliminary results

In this section, the efficiency of the proposed algorithm PLOR is compared with the
well-known DIRECT algorithm. A list of used test problems is presented in Table 1. These test
problems were investigated by (Jones, Perttunen, & Stuckman, 1993) and (Hedar, 2005). The
global minimum of the Griewank function is in the center of the feasible set, so the DIRECT
algorithm would find it in the first iteration. Therefore, we slightly changed the feasible region,
for meaningful comparison.

Table 1. Description of test problems.

Function name n D No: (?f global Global minimum
minimizers

Ackley 2 [-15,30]? 1 0.000
Branin 2 [—5,10] x [0,15] 3 0.398
Easom 2 [-100,100]? 1 —1.000
Goldstein-Price 2 [—2,2]? 1 3.000
Griewank 2 [-600,500]? 1 0.000
Michalewics-2 2 [0,7]? 1 —-1.801
S-H. Camel B. 2 [—3,3] X [-2,2] 2 —1.032
Shubert 2 [—10,10]? 18 —186.831
Hartman-3 3 [0,1]3 1 —3.863
Shekel-5 4 [0,10]* 1 —10.153
Shekel-7 4 [0,10]* 1 —10.403
Shekel-10 4 [0,10]* 1 —10.536
Michalewics-5 5 [0, ]° 1 —4.688
Hartman-6 6 [0,1]° 1 —3.322

In Table 2, the proposed PLOR, and the original DIRECT algorithms are compared. The
efficiency is defined as the number of function evaluations (n.f.eval.) until algorithm generates
a trial point X such that inequality (11) is satisfied.

The results show that PLOR is very competitive with DIRECT since, PLOR was more
efficient in 11 problems out of 14 with no help from manually adjustable parameters which are
common in many well-known algorithms.

Concluding remarks

A theoretical contribution of this paper is the development of the Reduced-Set
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Pareto-Lipschitz  Optimization (PLOR) which exploits advantages of the sequential
optimization of the problem and provides the algorithm without adjustable parameters. It is
important as compared with other methods and convenient for users.

An extensive computer simulation with various test functions may reveal additional aspects
of the proposed algorithm and that would be an interesting new investigation. The present
description of PLOR can serve as a basis for discussions on the possibilities and limitations of
the Pareto optimality criteria for various applications of the Lipschitzian optimization to

functions with unknown Lipschitz constants.

Table 2. Comparison of PLOR and DIRECT.

Function name PLOR DIRECT

fx) n.feval fx n.f eval.
Ackley 0.00005646 649 0.00005646 705
Branin 0.39790038 85 0.39790038 195
Easom -0.99998998 32833 -0.99998998 32845
Goldstein-Price 3.00009038 85 3.00009038 191
Griewank 0.00007949 60231 0.00007949 7099
Michalewics-2 -1.80127241 55 -1.80127241 69
S-H. Camel B. -1.03162357 269 -1.03162357 285
Shubert -186.72153725 1641 -186.72153725 2967
Hartman-3 -3.86245215 111 -3.86245215 199
Shekel-5 -10.15234984 6857 -10.15234984 155
Shekel-7 -10.40196762 133 -10.40196762 145
Shekel-10 -10.53539008 133 -10.53539008 145
Michalewics-5 -4.53765578 500000 -4.6872130 13537
Hartman-6 -3.32207380 311 -3.32207380 571

References

Evtushenko, Y. G. (1985). Numerical optimization techniques. New York: Optimization software, Inc.
Figueira, J., Greco, S., & Ehrgott, M. (2004). Multiple Criteria Decision Analysis:State of the Art
Surveys. Berlin: Springer.
Finkel, D., & Kelley, C. (2006). Additive Scaling and the DIRECT Algorithm. Journal of Global
Optimization , 36, 597-608.
Gablonsky, J., & Kelley, C. (2001). A Locally-Biased form of the DIRECT Algorithm. Journal of
Global Optimization , 21, 27-37.

Hedar, A. (2005). Hedar, A. Retrieved from

http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm
Jones, D., Perttunen, C., & Stuckman, B. (1993). Lipschitzian Optimization Without the Lipschitz
Constant. Journal of Optimization Theory and Application, , 79, 157-181.
Ko, K.-I. (1991). Complexity Theory of Real Functions. Boston: Birkhauser.
Miettinen, K. (1999). Nonlinear Multiobjective Optimization. Boston: Kluwer Academic Publishers.
Mockus., J. (2011). On the Pareto-Lipschitzian Optimization. Informatica , 22, 521-536.
Pardalos, P., & Siskos, Y. (1995). A Historical Perspective. In Advances in Multi-criteria Analysis.
Kluwer Academic Publishers.

191




Mockus and Paulaviius, On the reduced-ser Pareto-Lipschitzian optimization

Paulavidius, R., & Zilinskas, J. (2007). Analysis of different norms and corresponding Lipschitz
constants for global optimization in multidimensional case. Information Technology and Control ,
36 (4), 383-387.

Paulavicius, R., Zilinskas, ]., & Grothey, A. (2010). Investigation of selection strategies in branch and
bound algorithm with simplicial partitions and combination of Lipschitz bounds. Optimization
Letters , 4 (2), 173-183.

Pijavskij, S. A. (1972). An Algorithm for finding the absolute extremum of function. Computational
Mathematics and Mathematical Physics , 57-67.

Sergeyev, Y., & Kvasov, D. (2006). Global search based on efficient diagonal partitions and a set of
Lipschitz constants. SIAM Journal on Optimization , 16 (3), 910-937.

Shubert, G. (1972). A sequential method seeking the global maximum of function. SIAM Journal on
Numerical Analysis , 9, 379-388.

Sukharev, A. (1971). On optimal strategies of search of extremum. Computational Mathematics and

Mathematical Physics , 910-924.

APIE REDUKUOTA PARETO-LIPSICO OPTIMIZAVIMA
Jonas Mockus, Remigijus Paulavicius
Santrauka
Straipsnyje pasitlyta ir iStirta nauja Pareto-Lipsico optimizavimo versija (PLOR). Parodyti PLOR
privalumai lyginant su originalia Pareto-Lip$ico optimizavimo versija (PLO) bei su placiai Zinomu

DIRECT algoritmu.

Pagrindiniai ZodZiai: Pareto optimalumas, Lipschitz funkcijos, sumazintas duomeny rinkinyas,
globali optimizacija
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