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Abstract: Given training sample, the problem of classifying Gaussian spatial data into one of
two populations specified by conditional autoregressive model (CAR) with different mean functions
is considered. This paper concerns classification procedures associated with Bayes Discriminant
Function (BDF) under deterministic spatial sampling design. In the case of complete parametric
certainty, the overall misclassification probability associated with BDF is derived. In this paper we
develop further our methods of spatial classification to apply to the CAR case. Spatial weights based
on inverse of Euclidean distance and the second and third order neighbourhood schemes on regular
2-dimensional lattice are used for illustrative examples. The effect of the spatial sampling design,
Mabhalanobis distances and prior probabilities on the performance of proposed classification
procedure is numerically evaluated.
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Introduction

It is well known that in case of completely specified populations and known loss
function, an optimal classification rule in the sense of minimum overall misclassification
probability (OMP) is based on BDF (Anderson, 2003). Many authors (see e. g. Lawoko
and Mclachlan, 1985; Kharin, 1996) have investigated the performance of the BDF in
classification of dependent observations (stationary time series, equicorrelaton, Markov
dependence, autoregressive models). Switzer (1980) was the first to treat classification of
spatial data. Spatial discrimination for feature observations having elliptically contoured
distributions is implemented in Batsidis and Zografos (2011). Saltyte and Ducinskas
(2002) derived the formulas for error rates when classifying the observation of Gaussian
random field into one of two classes with different regression mean models and common
covariance function. However, in these publications, the observations to be classified are
assumed to be independent from training samples. This is unrealistic assumption
particularly when the locations of observations to be classified are close to ones of training
sample.

The first extensions to the case when spatial correlations between Gaussian observations
to be classified and observations in training sample are not assumed equal zero is done in
Ducinskas (2009). Here only the spatial covariance functions belonging to Mattern class
are considered. In this paper we develop further the latter investigation to the case of spatial

Gaussian data specified by widely used CAR model, pioneered by Besag (1974).
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We have derived an explicit expression of the OMP (Lema) and proposed to use it as
performance measure of classification procedure. By using the derived OMP, the
performance of the BDF is numerically analyzed in the case of stationary Gaussian random
field on 2-dimentional regular lattice. The dependence of the values of obtained OMP on
the Mahalanobis distance for different spatial sampling designs and prior distributions for
class membership is investigated.

By applying the proposed criterion, the numerical comparison of some training labels
configurations (TLC) is carried. That gives us the strong arguments for suggestion to
include derived formulas of error rates in the geospatial data mining (Shekhar et al, 2002).
The proposed BDF could also be considered as the extension of widely used Bayesian
methods to the restoration of image corrupted by spatial Gaussian noise (Cressie, ch. 7.4,

1993).

1. The main concepts and definitions

The main objective of this paper is to classify the observations of Gaussian random field

(GRF)

{2(s):seDcR?}.
The model of observation Z(s) in population Q  is
Z(s)=u,(s)+e(s), )
where u; (S) is a deterministic mean function , j =1, 2 and error term &(s) is generated

by zero-mean stationary Gaussian random field {E(S)Z Se D} with covariance function
defined by model for all S,U€ D.

covie(s), e(u)}=C(s—u;0), )
where 0 €0 isa Px1 parameter vector, ® being an open subset of R*.

For given training sample, consider the problem of classification of the Z, =Z(s;) into

one of two populations when

ﬂl(so);t H; (So )' S, € D.
Denote by S, ={s,eD; i=1..,n} the set of locations where training sample

T'=(Z(s,),.-., Z(S,)) is taken, and call it the set of training locations (STL). It specifies
the spatial sampling design or spatial framework for training sample. We shall assume the

deterministic spatial sampling design and all analyses are carried out conditional on S .
Assume that S, is partitioned into union of two disjoint subsets, i. e. S, =S® US®,
where S is the subset of S, that contains n ; locations of feature observations from Q;,
J =1 2. So each partition &(S,) = {S M s® } with marked labels determines TLC.
For TLC &(S,), define the variabled = ‘D(l) -D® ‘, where DY is the sum of

distances between the location S, and locations in s j=12.
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As it follows, we assume that STL S, and TLC & are fixed. This is the case, when

spatial classified training data are collected at fixed locations.
For notational convenience, the argument @ in all its functions is now dropped.
So the model of training sample is

T=M+E,
where M is the vector of the training sample mean and E is the Nx1 — vector of random
errors that follows multivariate Gaussian distribution N, (0,V).

Denote by ¢, the vector of covariances between Z,, and T.
Set S2 =S, uUs, and T, =(Z(s,),Z(S),.-. Z(S,)) -
Then the variance-covariance matrix of vector T is
Cc(0) c(’,j

c, V ®)

V' =var(T,) :(

Let ¢ denote the realization of T .
Since Z, follows model specified in (1), (2), the conditional distribution of Z, given

T =t, Q; is Gaussian with mean
1, = E(Z,[T =0 )= p1;(s,) + 4t -M), j=1,2 (4)
and variance
o =var(Z,T =t;Q,)=C(0) -V c, (5)
where o = ¢}V .
Under the assumption of complete parametric certainty of populations the BDF

minimizing the OMP is formed by log ratio of conditional likelihoods.
Then BDF is specified by (McLachlan, 2004)

(2= 2 St + ) - s+ ©

where y =In(z, / 7,).

Here 7,7, (7, + m, =1) are prior probabilities of the populations €, and Q, for
observation at location S;.They specified the prior distribution for class membership for
observation at location s, .

So BDF allocates the observation in the following way:

Classify observation Z given T =t to population €, if L,(Z,)>0, and to population

Q,, otherwise.

Definition. The OMP for the BDF L[(ZO) specified in (6) is defined as

PB:ZZ: i”ipij’

i=L j=1,j#i

where, for i, j =1, 2,
Pij = Pit((_l)J Lt(zo)< O)‘
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Here, for 1 =1, 2, the probability measure P, is based on conditional distribution of
Z, given T =1,Q; specified in (4), (5). As it follows, P will be called Bayes OMP
(BOMP).

Note that the squared Mahalanobis distance between marginal distributions of Z, and
the squared Mahalanobis distance between conditional distributions of Z, given T =t are
specified by A? = (,ulo — 3 )2 /C(0) and A = (,uﬁ — ,ugt)2 | 2, respectively.

From (4), (5) it is easy to derive that

A, =NC(0)/ o). (7)

Thus A, does not depend on realizations of T.

In population Q P the conditional distribution of L[(ZO) given T =t is normal
distribution with mean

Ej(L(Zo)= (0" A5 12+
and variance
var;(L,(Z,))= 45, j =1,2.

By using the properties of normal distribution we obtain
2 .
PB = (7, 0(- A, /2+(-1)' 7/A, ) (8)
-1

where (I)() is the standard normal distribution function. So it is obvious from (8) that
OMP does not depend on the realization of T.

The OMP is one of the natural performance measures to the BDF similar as the mean
squared prediction error (MSPE) is the performance measure to the kriging predictor (see
Diggle et al, 2002). MSPE are usually used for spatial sampling design criterion for
prediction (see Zhu and Stein, 2006). These facts strengthen the motivation for the
deriving an explicit expression of the OMP for spatial classification procedures.

2. Classification based on BDF for CAR model

For data collected over geographic regions such as counties, census tracts, zip codes, and
so on, the most commonly used are CAR specifications (see Haining, 1990). CAR
distributions are sometimes used as the distribution of random effects in the mean structure
in hierarchical models (see Anselin, 1988).

Denote by W;; a spatial weight specifying the interconnection between locations s; and
S (w; =0,and W; #0 if 1= J, and 0 otherwise) for i, j =0,...,N. Here i ~ ] denotes
that location §; is a neighbour (typically defined in terms of spatial adjacency) of location

S;. Spatial weights can also be based on economic distance (Case, Rosen, Hines, 1993) or

on trade-based interaction measures (Aten, 1996).
In the present paper we consider the case of a single parameter CAR model with full

conditional distribution of Z; given T,Q2;with moments specified as
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E(Z, | T.Q;) = #;(s0) + z'ZWOi (Z(s;) — u(s1)

i~0
and var(Z, |T.Q;)= o¢, where 7 is a smoothing parameter and is often interpreted as
measuring spatial association. Several authors prefer 0 <7 <1 to avoid singularity of
matrices. Then covariance matrix of vector T, specified in (3) having the following form
Vi=ol(l-aW*)™ )
where W is a n+1 by n+1 spatial weights matrix for set of locations S . Denote by
W, the 7 vector of spatial weights between S; and S, i.c.
Wy = (Wog, Wozy---:Wop)-
Set B=1-7W, where W is n by 7 spatial weights matrix for the set of locations S, .
Make the following assumptions:
(A1) The set of locations S forms a clique of size N+1, i.e spatial weights between
all locations are not zero.
(A2) Spatial weights for S, and S are based on the Euclidean distance between
different locations.
Lema. Suppose that observation Z,, to be classified by BDF and let covariance matrix of

T, to be specified in (9). Then under the assumptions (A1) and (A2), OMP takes the form

2 .
PB = _zl(;zjcp(— Akj2+(=1) y/(A K))), (10)
J:
where
k =1/1-7*W,B'w. (11)
Proof. Under assumptions (A1) and (A2), we can easily derive that

(0w
W* = : (12)

w, W

By using some matrix inversion properties in (9), (12), we can conclude that conditional
distribution of Z;, given T =1 in Q; is Gaussian with mean
:u?t = 4 (S) + g (t—=M), j=12,
and variance
o; =C(0)1-7°w,B'w).
After inserting these expression into (7) and using (8) we obtain (10), (11) and complete
the proof of Lema.

3. Example and discussions

Numerical example is considered to investigate the influence of the statistical parameters

of populations to the proposed BDF in the finite (even small) training sample case. With

an insignificant loss of generality the cases with N, =N, are considered. We also suppose
that assumptions (A1) and (A2) hold.
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In this example, observations are assumed to arise from stationary Gaussian random

field with constant mean. The spatial weights are specified by w;; =1/d;;, where d;; is the

ij 2
Euclidean distance between different locations.

Assume D is regular 2-dimentional lattice with unit spacing. We consider two spatial
structure schemes:

NN(2) denotes second order neighbourhood scheme with s, = (1,1),
NN(3) denotes third order neighbourhood scheme with s, = (2, 2).

So for NN(2) STL consists of 8 second-order neighbours of Sjand is denoted by
S; ={(0,0),(1,0),(2,0),(0,2),(2,2),(0,2),(1,2),(2,2)} and for NN(3) STL consists of 12
third-order neighbours of s, and is denoted by S, ={(2,0),(11),(2,),(31),(0,2),(L2),
(3,2),(4,2),(1,3),(2,3),(33),(2,4)}.

Set M1={i:s, € s}. Two cases of prior probabilities are considered:

ClL =3 Y/n

ieM1
C2. 7, = (> U dg)I( D' 1/dy)
ieM1 i=1,...n

Case C1 is based only on the number of neighbours, while case C2 incorporated spatial
adjacency (distances) also. So OMP is denoted PBN for the case C1 and PBD for the case
C2.

Consider two TLC &, &, for Sgspecified by

£ ={s"={02.02.21.@0)} $?={00),(01.(22).(20)}}

& =159 ={12),(20,01,L0)}, 5?={00),(02),(20),(22)}}.
They are presented in Figure 1.

&1 &2
A A
4 4
3 3
2 @ ® R 2 ®
S S
1 ‘ ¢ 1@ ‘ o
® > ® >

0 1 2 3 4 0 1 2 3 4

Figure 1. Two different TLC in second order neighbourhood scheme NN(2)

with S®and S® points * and *, signed as respectively.
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Consider two TLC &;,&, for S, specified by

& =15 ={(13),(24),(23),(21),(32),(42)}, S? ={(0,2),(1,2),(20),(33), 3D, LY}

& =159 ={0.2),12),(23),(21.(32).(42)}, S? ={(2.4),13), (LD, (20).(33). (3D}
They are presented in Figure 2.

&3 s
A A
4 L 4
3 o 3 ®
So So
2 ? f 2 @ @ ® @
1 ® 1 ®
0 1 2 3 4 0 1 2 3 4

Figure 2. Two different TLC in third order neighbourhood scheme NN(3)

with S®and S@ points ® and *, signed as respectively.

The comparison of two cases of prior distribution for each TLC is done by the values of
index 7=PBD/PBN . The results of calculations with 7 =0.3 for & and &, are shown
in Figure 3 and for &; and &, in Figure 4.

Values of 1 for NN(2) neighbourhood scheme

098

096 - -

054 +

092

k-]

0.88

086 —

0.84

010203040506070805% 1 111213141516171815 2
Fay

Figure 3. Values of 77 for NN(2) neighbourhood scheme.
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Values of 1 for NN(3) neighbourhood scheme
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Figure 4. Values of 77 for NN(3) neighbourhood scheme.

By the definition variable d represents the asymmetry population labels distribution in

training sample. It is easy to obtain that d= 2(+2-1) for & and &;, and
d =4(/2 -1) for &, &,.S0 & and & are less asymmetric TLC than &, and &, .

Analyzing the contents of Figure 3 and Figure 4 we can conclude that prior distribution
based on distances to neighbours outperforms the one based only on numbers of
neighbours, because 77 values are smaller than one.

Figures also shows that for both neighbourhood schemes 7 increases with the increasing
of A. Graphs also enable us to conclude that positive effect of the incorporation distances
into prior distributions is stronger for more asymmetric TLC i.e. for &, and &,, and for

smaller Mahalanobis distances.
Conclusion

We have considered statistical classification of CAR observations based on BDF for two
objectives: deriving of an explicit expression of the overall misclassification probability for
proposed procedure, and numerical analysis of the influence of different prior distributions
of class labels based on the values of OMP.

The first objective was reached in Lema by deriving an explicit expression of the OMP
for the Gaussian case under slightly restrictive assumptions.

The examples considered for the realisation of the second objective shows the advantage
of the prior distribution of the class labels with incorporated distance between locations
against one based only on number of neighbours. The effect of the distance incorporation is
evaluated for different spatial sampling designs. It was obtained that the effect is stronger
for more asymmetric TLC.

Hence the results of numerical analysis give us strong arguments to expect that proposed
derived formula of the OMP could be effectively used for performance evaluation of
classification procedures and for the optimal designing of spatial training samples. The
simulated annealing algorithm (see e.g., Lark, 2002) can be easily used in searching the
optimal spatial sampling design for the considered spatial classification problem.
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STATISTINIS GENERUOTU PAGAL SALYGIN] AUTOREGRESIN] MODEL]
ERDVINIY DUOMENU, PASISKIRSCIUSIY PAGAL GAUSO SKIRSTINJ,
KLASIFIKAVIMAS
Kestutis Dudinskas, Ingrida Borisenko, Indré Simkiené
Santrauka

Darbe pasirinktoms mokymo imtims yra analizuojama erdviniy duomenu, pasiskirsciusiy pagal
Gauso skirstinj, klasifikavimo j dvi populiacijas problema, teigiant, kad populiacijos apibréztos pagal
salyginj auroregresinj modelj (CAR) su skirtingomis vidurkio funkcijomis. Straipsnyje sutelkiamas
démesys ties klasifikavimo procedira, susijusia su Bayeso diskriminantine funkcija (BDF) pagal
deterministing erdviniy im&iy schema. Siuo atveju, kai visi parametrai yra Zinomi, yra apibrézta
bendra klasifikavimo klaida susijusi su minéta BDF. Tai yra ankstesniy tyrimy tesinys CAR atvejui.
Erdviniai svoriai suteikiami naudojant atvirkstinio Euklidinio atstumo metoda, o erdvinés
konfigiiracijos pagristos antros ir trecCios eilés kaimyny schemomis ant taisyklingos dvimatés
gardelés. Taip pat straipsnyje yra skaitiskai jvertinami ir palyginami aprioriniai klasiy skirstiniai,
naudojant darbe i$vestas bendros klasifikavimo klaidos tikimybés formules.

Pagrindiniai ZodZiai: Bayes diskriminantiné funkcija, kovariaciné funkcija, Gauso atsitiktinis
laukas, klaidingo suklasifikavimo tikimybé, mokymosi Zymiy konfigtiravimas
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