COMPUTATIONAL SCIENCE AND TECHNIQUES Publisher: Klaipéda University
Volume 2, Number 1, 2014, 275-288 htep://journals.ku.lt/index.php/CST
© Klaipéda University, 2014 Online ISSN: 2029-9966

DOI: http://dx.doi.org/10.15181/csat.v2i1.396

MAXIMAL FREQUENT SEQUENCE BASED TEST SUITE REDUCTION
THROUGH DU-PAIRS

Narendra Kumar Rao Bangole', RamaMohan Reddy Ambati®
'INTU College of Engineering, JNTUH, Hyderabad, India
*Sri Venkateswara University College of Engineering, Tirupati, India
narendrakumarrao@yahoo.com, ramamohansvu@yahoo.com

Abstract. The current work illustrates the importance of clustering the frequent items of code
coverage during test suite reduction. A modular most maximal frequent sequence clustered
algorithm has been used along with a requirement residue based test case reduction process. DU-
pairs form the basic code coverage requirement under consideration for test suite reduction. This
algorithm farewell when compared with few other algorithms like Harrold Gupta and Soffa (HGS)
and Bi-Objective Greedy (BOG) algorithms and Greedy algorithms in covering all the DU-Pairs.
The coverage criteria achieved is 100% in many cases, except for few insufficient and incomplete
test suites.

Keywords: software testing, test case, code coverage criteria, test suite, test suite reduction.

Introduction

Software testing intends to disclose as many defects in the system under test to deliver a
quality product to its customers. Software under test undergoes changes due to
modifications in code and change in requirements. Hence, the testing counterpart has no
alternative other than writing test cases for the modified system. In this scenario the size of
the test suite for the system grows tremendously and becomes difficult to control it.

The problem arises where the test cases have to be reduced based on the redundancy and
similarity without affecting defect detection capability of the existing test suite. The aim of
research in this direction is to determine minimal set of test cases which exercises all the
coverage requirements as the entire suite is capable of achieving. This results in minimal
number of test cases and hence reduced time and cost for testing.

Code coverage based test suite reduction involves exercising of all the components of the
system under study. The components can be methods, conditional statements, statements,
classes and few other advanced components. From literature it is learnt that test cases which
do not satisfy the code coverage requirements are less effective than rest of other types of
test cases and coverage reduced test suites are capable of controlling the size of the test
suites (Harrold et al., 1993).

There have been quite a few test suite reduction techniques based on code coverage
criteria. The common drawback that needs to be addressed is to cover all coverage
requirements without residue and handle an event such that when a tie occurs between two
test cases. Few residual requirements (through DU-pairs) are not covered by test suite

http://journals.ku.lt/index.php/CST/issue/view/1
mailto:narendrakumarrao@yahoo.com

Computational Science and Techniques, Vol 2, No 1, 2014, 275-288

reduction approaches (few). This can be handled by additional test cases without
compromising for optimal test case reduction.

In current work, test cases are clustered based on maximal frequent item based clustering
before the actual test suite reduction process. Clustering process reduces the search space
for the test suite reduction. The actual test suite reduction is performed by residue
requirements based process, where in test cases chosen for coverage requirement is a
maximal code coverage test case from a given cluster of test cases of the test suite.

1. Related Work

Test suite reduction problem is attributed for a NP-complete problem similar to set-
cover problem. There has been sufficient research through (Agrawal, 1999; Black et al.,
2004; Errol and Brian., 2005; Harrold et al., 1993; Jeffrey and Gupta, 2005; Jones and
Harrold, 2003; Offutt et al., 1995; Saced and Alireza, 2010; Tallam and Gupta, 2005;
Scott and Memon, 2007) addressing the test suite reduction. It aims at removing
redundant test cases from the test suite and achieves completeness in testing through
covering all the code requirements of the system under test, further these test cases should
be capable of revealing defects.

Harrold et al. has proposed test suite reduction based on cardinality to its reduction.
The reduction procedure is based on selection of singleton test cases from a test set until all
test cases in the increasing order of cardinality and coverage requirements..

Saced and Alireza, proposed Bi-Objective Greedy algorithm for test suite reduction,
which satisfies maximum number of requirements of coverage with minimum overlap in
coverage of requirements with other test cases. This algorithm is evaluated using space
program from SIR repository to identify effects on fault detection capability and size
reduction metrics. This algorithm proceeds in three steps and is defined as follows:

The three steps are briefly defined as follows:

Step 1: Matrix transpose is performed to identify and indicate the number
of requirements coverage overlapping of a test case with others.

Step 2: Selection of optimum test case until all testing requirements are
covered or visited.

Step 3: Updates the cumulative selected vector with respect to the selected

test case and cumulative coverage of the reduced suite is updated.

Preethi and Nedunchezhian proposed an approach for selection of requirements for
data-flow testing. A Coverage based test Suite reduction algorithm is introduced to cover all
the def-use pairs during testing. A Greedy approach was used for the purpose and this
algorithm takes optimal test cases into account for reduction.

Researchers targeted on code coverage items to measure and analyze test coverage. There

are many coverage item types like statement, branch, block, decision, condition, method,
class, package, requirements, and data flow coverage etc... The following Table-1 classifies

276

Bangole and Ambati, Maximal Frequent Sequence Based Test Suite Reduction Through
DU-Pairs

the items based for code coverage taken up by several authors. Code coverage has been

discussed in depth in following table (Table-1).

Table 1. Code coverage Items.

Author Year Code Coverage Items
Diaz and Blanco 2004 | branch
Lormans 2005 | requirements

Angeletti and Giunchiglia | 2005 | line, condition, method

Lingampally et al. 2007 | branch, block, method, predicate

Kapfhammer and Soffa 2008 | data flow coverage
Koochakzadeh 2010 | method, class, package

Survey on code coverage criteria clustering is as in (McMaster and Memon, 2008;
Dickinson and David, 2009; Khalilian and Saeed, 2009; Shin Yoo et al. 2009; Arvind,
2012; Carlson et al., 2011; Arafeen and Hyunsook Do, 2013; Vipindeep et al., 2009; Yi
Miao et al., 2012) are discussed.

2. Problem Definition

The Problem of test suite reduction is defined as given below:
e A test suite T comprises of test cases {ti, t, t,...ta} also known as universal set
capable of testing all coverage requirements, but not optimally.
e Test requirements are the items represented by R = {ri, 12, r3,...1a} of the desired
program under consideration.

o Subsets of clusters or test case sets satisfy corresponding to requirements r;.

3. Proposed Approach
3.1 DU pairs

A def-use pair (DU) for variable x is a pair of nodes (ni, n2) such that
e xisin DEF(n)).
e The definition of x at nl reaches n,.
e xisin USE(ny).
In other words, the value that is assigned to x at n; is used at n, since the definition

reaches ny, the value is not killed along some path n;...n,.

3.2 Data Structures

SBT}- Statement block table

RTCj- Test case vs Blocks table

RTS;;- Cluster of test cases

DU-List - Def-use pair coverage list
DU-List,ym, - Def-use pair temporary list

277

Computational Science and Techniques, Vol 2, No 1, 2014, 275-288

freqCount,,_ Frequency count of coverage items in R7C;
A;- Blocks of code.

7S;- Test Suite

D; - List of Definition variables

Ui - List of Usage variables

R Set of selected test cases after test suite reduction.

t;. test case

3.3 Approach

10

278

Identify and tabulate the given program statements as blocks (Statement vs Blocks Table)

SBT;.

From the given program generate the D, U Lists.

a Populate the D - List with statement numbers of declaration and assignment statements of
form (a:=).

b Populate the U - List with statement numbers of computation and usage of variable of form
(:=a).

Classify the DU as blocks based on statement number in DU list and generate valid

combinations of DU-pairs such that a pair is formed with(4; 4;) and i > j (If required

manually validate the DU-pairs).

Generate a visited bit-vector of size of number of DU pairs and correspond it as DU-List.

Populate the DU-List with valid DU pairs and store the list in DU-Listimp, and mark all the

values as 0 (un-visited).

Populate RTS and perform Most Maximal Frequent Trace Clustering (MMFETC) of test cases.

From the clusters eliminate all redundant test cases with same block flow and coverage

(RedntEliminate).

From clusters generated by MMFTC, for all test cases and generate the residue DU-pairs for all

the test cases in the given MMFTC Cluster by using following steps.

a Mark the number of blocks or DU-pairs contained in the test case by using DU-List,.,.
Count the number of blocks selected by a given test case.

c If there are few DU pairs such that (4; 4) and (4s A)) such that i<k, then retain (Ay, A))
and mark the corresponding DU pair as visited and unmark (4;, 4;) in DU-List,,,,.

d Ifa tie occurs for maximum number of blocks covered by a test case, then select a test case
of maximal length from the given cluster.

Perform OR operation on DU-List and DU-List,,, to retain previous visited set of DU-pairs

and retain test cases in R

Repeat steps from 5 until all the requirements are marked visited in DU-List or test cases have

been selected from Test Suite or

Bangole and Ambati, Maximal Frequent Sequence Based Test Suite Reduction Through
DU-Pairs

Figure 1 represents the step-wise graphical flow representation of approach presented in
section 3.3.

Program /
Function
r

Block Statement Formulate DU-pairs
Representation Level D & T Lists Genel:al:ion
Step -1 Profiling Step -2 Step — 3,4

A

. MMETC Redundancy Test 5 C:(
Create DU-List Test cases Elimination R_:gsi tion
Steps — 5,0 Step - 6 Step - 7 5 01

Steps-8, 9, 10

Figure 1. Flow Representation of the approach.

3.4 Algorithms

Algorithm 1: Most Maximal Frequent Test case Clustering (MMFTC)

Input: RTC;, freqCount,

Output: RTS,, comprising of clustered test cases

1 For all pair of code items that have not been visited or until all items are visited
or marked as visited do

2 Assign 7, k with max(FreqCount,,), max(FreqCount,.;) from RTCj

n-1, n-2

RTSenpy=1(xi, x2) /5 x2€RT A {F(x, x6)= max{ N F(x; xx)}}

i=0, k=0

/[Perform intersection of maximal most frequent coverage.
3 Repeat F(xiNxz, x0.1)=F(x:Nxx) N Floxgs).
//Repeat the process recursively for all coverage items.
4 RTS, = RTS, U RIS,
//Recursively gathers all the clustered test cases into a cluster.
5 n++;

6 RTCj=RTCy—{z} /] Eliminate the test case from further clustering process.

279

Computational Science and Techniques, Vol 2, No 1, 2014, 275-288

Algorithm 2: Residue Requirements Test Suite Reduction (RRBC)

Input: RT.S'Z-];DUH) DU—LiSl‘i, DU—LiSt,em],(,r)

Output: Ry

1 Undil all the code requirements are visited or test suite is empty do

2 For all test cases in given cluster do the following

3 For all pairs of DUy check the following

4 Mark block as visited in DU-List,,, ift DUy € RTS?;,

5 Ry = R U 15 Mff {4/ ;€ RTS; A max(count(DU-Listim)(%))) A 27 €R)}
//Consider the test case with maximum coverage of DU-pair blocks per test case.

6 If max(count(DU-Listimy(2)) == max(count(DU-List.m(tk)) then

7 For (A, A) and (Ai, A) such that i<k, then retain (4, A) and mark the
corresponding DU pair as visited and unmark (4;, 4)) in DU-List.emp.

8 DU-List = DU-List OR DU-List,n,. ||Computes the residual requirements for the
next iteration.

Algorithm 3: Redundant Test case Elimination (RedntElmnt)

Input: RTS;
Output: Ry
1 For all the clusters do the following
a. For all test cases in R7S; do
b. If (Length(#) == Length(#))
c. If (CompareString(#, #)=0) then test case j is redundant and eliminate it from

RT.
d. If (RTS={#:}, append it to RTS, where ne|RTS|-1.

3.5 Concept lllustration

Following is the illustration of the approach in section 3.3. Variable referencing is an
essential feature in data flow based testing. A variable can be examined throughout the
program in terms of definition and usage, also termed as def-use pair. A variable linked
from point of declaration to its point of reference is also known by the name DU-pairs or
Definition-Use pair.

Test cases are designed from data flow view point in terms of blocks and internally
representing the DU-pairs. DU-pairs are used as criteria to assess the coverage of
requirements of the test cases in the current work. In present illustration, DU-pairs
criterion is used for comparison with approaches like HGS, BOG, Greedy approach and
MMFTC-RRBC approach. A hypothetical program is chosen to demonstrate the
MMFTC-RRBC as described in section below.

280

Bangole and Ambati, Maximal Frequent Sequence Based Test Suite Reduction Through

DU-Pairs
Sample Program
. Block-
Line No Program Identifier
1 Start program
2 int a4, neg_no; A
3 scanf(“%d”, &a); '
4 if (2>0)
5 printf(“number is positive-%d”, a); A,
6 else
7 printf(“number is negative-%d”, a); A
8 neg_no=a; ’
9 a=num_convert(neg_no);
10 printf(“natural number determined”); Ay
11 if (¢%2==0) As
12 printf (“number even-%d”, a); As
13 else A
14 printf (“number odd-%d”, a); /
15 printf(“type of number determined”); Al
16 end program
a:=|Al
A2 :1{ \:l:a A3
\ l/a-_ Table 2. Blocks vs Statements
Blocks Statements
Ad | 5tmnt A, 1,2,3.4
A 5
o A 6,7,8,9
as [=a A4 10
L sy As 11
AB |:=a =a |Aa7 As 12
\ A 13,14
As 15

AB Stmnt

Figure 2. Blocks representation of Sample Program.

Identify the Blocks and Statements from program:
D - List of Statements-{{2,3},9}

U - List of Statements-{4, 5,{7,8},11,12,14}
D- Blocks list - {4;, A3} from Table-2.

U- Blocks list - {4, A, As, As, As, A7}

281

Computational Science and Techniques, Vol 2, No 1, 2014, 275-288

Vahd DU‘PairS: { MI;A2)> MI)A.?)) (/41)145)) MI)AG)) M])A7)) (/43)/45)) M})AG)) (/45)/47)}

. Table 3. Test case-Code coverage Requirements
Block-wise test case traces: 3 g |

A A T4 4 [4s TAs 14 |4

Ti>Ar-Ar-ArAs-AcAs 7, |1 |2 03 3 45 5 : 07 68
Tr>A1-Ao-As-As-Ar-As T 1 2 0 3 4 0 5 6
T5->A1-As As-As-As-As T 1 0 |2 [3 |4 |5 |0 |6
T4— SA, -As -A4—A5-—A7—-A3 W 1 0 2 3 4 0 5 6
Freqg 4 2 2 4 4 2 2 4

Most Maximal Frequent Clustering f test cases (From Table 3):
F(A)N F(As) = {T,, T, T3, T4

F(ANA)NF(As) = {11, 151514

F(A,NANAs)N F(Asg) = {11, 10, T5. T4

F(A,NANAsNA)N F(A2) = {1, T2}

F(A,NANAsNAsNAL) ={T}, T5}

Iy F(ANANANANA) = (T5Ta)

Residue Requirement based Test case reduction is illustrated as below:

CLUSTER-I - {7, T3} Table 4. DU-List(Initial)

CLUSTER-II - {75, T34 Ads | Ards | Ards | Aids | Ards | Ands | Ads | Ards

0 0 0 0 0 0 0 0

CLUSTER-I
T1->A1-Ar-As-As-As-As
Tr->A1-A-Ai-As-Ar-As
Table 6. DU-Listiemp

Table 5. DU-Listiemp D-U Visited
D-U Visited Ar-A, 1
Ai-A; 1 Ai-Az 0
A-As 0 Ar-As 1
Ai-As 1 As-Ag 0
Ai-Ag 1 A-A; 1
A-A; 0 As-As 0
As-As 0 As-Ag 0
As-As 0 As-A; 0
As-A7 0 #pairs 03
pairs 03

Ti between T'-T; since #pairs = 3. Ti-selected.Rsuse = {11}

Table 7. DU-List

ArAs | Ai-As | Ai-As | Ai-As | A-A5 As-As | As-As | As-As

1 0 1 1 0 0 0 0
CLUSTER-II
T3 - >A 1 —A 3 —A4—A5-A5—A8 T4— >A b -A 3-A4-A 5-A 7-A8

282

Bangole and Ambati, Maximal Frequent Sequence Based Test Suite Reduction Through

DU-Pairs

Table 8. DU-Listemp Table 9. DU-Listicmp
D-U Visited D-U Visited
Ai-As 1 A-A;3 10
Ar-A; 0 Ar-A; 0
As-As 1 As-As 0
As-As 1 As-As 0
As-A; 0 As-A; 1
#pairs 03 #pairs 01

T~ selected since #pairs-03.
Reae = {77, T3}

Table 10. DU-List

Ar-A> A-As | Ai-As | Ai-As Ar-A; As-As | As-As As-A;

1 1 1 1 0 1 1 0

CLUSTER-I
D— > A1—A2—A4—A5—A7'A8

Table 11. DU-Listuen Table 12. DU-List

DU | Visited A4 | Ay | Ads | Acds | Acdy | 4245 | ArAq | Ard;
Ai-4; 1 1 1 1 1 1 1 1 0
As-A 0 . .
T, -Selected. No other test cases in cluster to compare residue
requirements.

RSafe = {Tl) T3) TZ}

CLUSTER-II
T4— >A 1 -A 3 -A4—A 5—A 7—A8

Table 13 DU’LiSttemp Table 14 DU LiSt (Fmal)
D—U ViSith AI’AZ A[’Aj AI-A5 AI-AG AI-A7 Aj-As Aj-Ag Aj‘A7
As-A7 1 1 1 1 1 1 1 1 1

T4 -Selected. No other test cases in cluster to compare residue requirements.

RS/IfE = {Z; 7}) B} T4}

In proposed method, MMFTC-RRBC, test cases are clustered based on frequency of
coverage items (blocks) in this case. The traces are stored as in table-3 with requirements
representing the columns of the mesh format. The output of MMFTC algorithm is clusters
containing test cases Ci- {7}, 75} and Cy-{75 74. After clustering step Residual
Requirements based clustering is in effect and test case reduction starts by considering the
distinct DU-pairs or code coverage items satisfied by the corresponding test case. A test case
satisfying most distinct DU-blocks corresponds to a selected test case. This is illustrated by
table- 4-14 above. The same illustration is applied to HGS, BOG and Greedy approaches

283

Computational Science and Techniques, Vol 2, No 1, 2014, 275-288

and facts are recorded (the approach is discussed in introduction).

The test cases selected are stored in Rsu, ensuring that all blocks and DU-pairs were
covered by the approach. Blocks and DU-pairs covered by each of the approaches is
illustrated in table-15. The table hypothecates the fact that for current scenario, Greedy
approach and MMFTC-RRBC fare well in terms of DU-pair coverage.

Table 15. Comparison of Approaches.

Approach %DU pairs | Test cases Selected | DU-pairs not covered
HGS {Tb 7—13) T4} M!)A7)

BOG 8 {Tb 7—13) T4} M!)A7)

Greedy (T, To, T T4 None
MMFTC-RRBC {7, 15, T5 T4 None

4. Experiment Analysis

An Empirical study was carried out with five different program ranging from 12-24 lines
of code to understand the effectiveness of the proposed MMFTC-RRBC approach. DU-
coverage criteria are chosen for establishing the approach. All DU-pairs were program
instrumented. All these programs were implemented in C-language, since paradigm is not
the point of consideration in our current work.

Following metrics were point of focus for evaluation of the current work to evaluate the
efficacy of the approach:

a. Code Requirement Coverage percentage:
R, - represents the total number of test consideration requirements and R, is the total
number of requirements satisfied by test cases selected during reduction.

R
RCOV(%) = |RC—OV|X100 (1)

Reol

b. Percentage Reduction in Size of Test Suite

TS =1- |Trs| 100
(6Red) — X (2)

|

| 7]- total number of test cases in the original suite and | 7| represents number of test cases
in representative set.

The size metric was evaluated for the approaches as described like HGS, BOG, Greedy
and MMFTC-RRBC, observation was that Greedy approach fare well with MMFTC-
RRBC as represented in the Figure 3.

284

Bangole and Ambati, Maximal Frequent Sequence Based Test Suite Reduction Through

DU-Pairs

100

20

&0

Coy erage Percentage

20

MMFTC-RREC

Greedy HG

=

. I .
BOG

Various Appraoches

Figurc 3. Comparison based on requirement coverage metric.

Test Suite requirement coverage was compared using Mean DU detected and Mean % size

reduced metrics. Table - 16 represents the program versus reduction algorithm performance

based on DU-pairs detection. The results of this comparison are represented in Figure 4.

Table 16. Programs used for Evaluation and comparison.

DU # DU # DU # DU
pairs pairs pairs pairs
Plr\(; BTAM 11 OC | Test | Detectable detected detected detected detected
ame cases | DU pairs | (MMFTC- | (Greedy | (BOG (HGS
RRBC) | Approach) | Approach) | Approach)
Odd_Even 14 4 8 8 8 7 8
Sum_Digits | 12 3 4 4 4 4 4
Cost Cal 24 6 5 5 5 4 4
Interest
Calculator 16 4 / / / 6 6
Prime
2 4 4 4 4
Number 0 > 3
Total 28 28 28 25 25
Percentage 100 100 89.2 89.2

285

Computational Science and Techniques, Vol 2, No 1, 2014, 275-288

100 ¢
%0
80
70 v
g0
sg 47 H Mean DU Detected
a0 7
30 7 B Mean % Test Suite Size
20 Reduced
10 Jf’,- =
_,” . . . I/’
o i & o

Percentage

0
{\(ﬁ? cg‘\'z’z < ®
@@‘

Approaches

Figure 4. Comparison based on test suite requirement coverage.

Conclusion

In this current work, we proposed MMFTC-RRBC using DU-pairs. Approach is
capable of achieving complete requirement coverage effectively. The proposed approach is
simple and tries to solve the purpose and is extendible to all complex variables of the
program. Fault detection effectiveness metric is a possible extension to the current work.

References

Arafeen, M.J., Hyunsook, Do (2013). Test Case Prioritization Using Requirements-Based
Clustering. Software Testing,Verification and Validation (ICST), 2013 IEEE Sixth
International Conference on, vol., no., pp.312-321.

Agrawal, H. (1999). Efficient Coverage Testing Using Global Dominator Graphs. PASTE '99
Proc. Workshop Program Analysis for Software Tools and Engineering, Toulouse, France,
vol.1, pp. 11-20.

Angeletti, D., E. Giunchiglia (2009). Automatic Test Generation for Coverage Analysis of ERTMS
Software. Software Testing Verification and Validation, 2009. ICST '09. International Conference
on , vol., no., pp.303-306.

Arafeen, M.J., Hyunsook, Do (2013). Test Case Prioritization Using Requirements-Based
Clustering. Software Testing, Verification and Validation (ICST), 2013 IEEE Sixth
International Conference on, vol., no., pp.312-321.

Arvind, K. (2012). Pair-Wise Time-Aware Test Case Prioritization for Regression
Testing. Information Systems, Technology and Management Communications in Computer
and Information Science, vol., no.285, pp.176-186.

Black, J., Melachrinoudis, E., Kaeli, D. (2004). Bi- Criteria Models for All-Uses Test Suite

Reduction. ICSE '04 Proc. 26 International Conference on Software Engineering, Edinburgh,
United Kingdom, pp.106-115.

286

Bangole and Ambati, Maximal Frequent Sequence Based Test Suite Reduction Through
DU-Pairs

Carlson, R., Hyunsook, Do., Denton A. (2011). A clustering approach to improving test case
prioritization: An industrial case study. Software Maintenance (ICSM), 2011 27th IEEE
International Conference on, vol., no., pp.382-391.

Errol, L., Brian, M. (2005). A Study of Test Coverage Adequacy in the Presence of Stubs.
Journal of Object Technology, vol.4, no.5, pp.117-137.

Eugenia, Diaz,].T., Raquel Blanco (2004). A Modular Tool for Automated Coverage in Software
Testing. Software Engineering Notes, vol. 26, no.5, pp. 256-267.

Harrold, M.]., Gupta, R., Soffa, M.L. (1993). A Methodology for Controlling the Size of a Test
Suite. ACM Transactions in Software Engineering and Methodology, vol. 2, no. 3, pp. 270-
285.

Jeffrey, D., Gupta, N. (2005). Test Suite Reduction with Selective Redundancy. In the Proc. 21
IEEE International Conference on Software Maintenance, Budapest, Hungary, vol.3, pp. 549-
558.

Jones, J.A., Harrold, M.]. (2003). Test-Suite Reduction and Prioritization for Modified condition/
Decision Coverage. IEEE Transactions on Software Engineering, vol. 29, no. 3, pp. 195-209.
Lormans, M.D. (2005). Reconstructing Requirements Coverage Views from Design and Test using

Traceability Recovery via LSI. TEFSE, Long Beach, California, USA, ACM.

Lingampally, R., Gupta, A., Jalote, P. (2007). A Multipurpose Code Coverage Tool for Java.
System Sciences, 2007. HICSS 2007. 40th Annual Hawaii International Conference on , vol.,
no., pp.261b,261.

Kapthammer, G.M., Soffa, M.L. (2008). Database-Aware Test Coverage Monitoring. Proceedings
of the Ist India Software engineering conference ISEC’08, Hyderabad, India, ACM, vol.1, 77-
86.

Khalilian, A., Saeed, P. (2009). Bi-criteria test suite reduction by cluster analysis of execution
profiles. In Proceedings of the 4th IFIP TC 2 Central and East European conference on
Advances in Software Engineering Techniques (CEE-SET'09), Tomasz Szmuc, Marcin Szpyrka,
and Jaroslav Zendulka (Eds.). Springer-Verlag, Berlin, Heidelberg, 243-256.

Koochakzadeh V. G. (2010). An Empirical Evaluation to Study Benefits of Visual versus Textual
Test Coverage Information. Lecture Notes in Computer Science, vol. 6303, pp 189-193.

McMaster S., Memon A.M., (2008). Call-Stack Coverage for GUI Test Suite reduction. Software
Engineering, IEEE Transactions on, vol.34, no.1, pp.99-115.

Oftfutt, A.J., Pan, J. and Voas,].M. (1995). Procedures for Reducing the Size of Coverage-Based

Test Sets. In Proc. of the 12[h International Conference on Testing Computer Software,
Washington, USA, vol.2, pp. 111-123.

Preethi, H., Nedunchezhian, R. (2014). A Greedy Approach for Coverage-Based Test Suite
Reduction. International Arab Journal of Information Technology, vol.11, issue-1.
Parsa, S., Khalilian, A., (2010). On the Optimization Approach towards Test Suite Minimization”,
International Journal of Software Engineering and Its Applications Vol. 4, No. 1, pp. 15-28.
Shin Yoo, Mark Harman, Paolo T, Angelo Susi (2009). Clustering test cases to achieve effective
and scalable prioritization incorporating expert knowledge. In Proceedings of the eighteenth
international symposium on Software testing and analysis (ISSTA '09). ACM, New York, NY,
USA, 201-212.

Saeed, P., Alireza, K. (2010). On the Optimization Approach towards Test Suite Minimization.
International Journal of Software Engineering and its Applications, vol. 4, no.1, pp. 15-28.

Tallam, S., Gupta, N. (2005). A Concept Analysis Inspired Greedy Algorithm for Test Suite
Minimization. Proc. of the 6th ACM SIGPLANSIGSOFT workshop on Program Analysis for
Software Tools and Engineering, Lisbon, Portugal, vol.2, pp. 35-42.

287

Computational Science and Techniques, Vol 2, No 1, 2014, 275-288

Vipindeep, V., Jacek Czerwonka, Phani Talluri (2009). Test case comparison and clustering using
program profiles and static execution. In Proceedings of the the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering (ESEC/FSE '09). ACM, New York, NY, USA, 293-294.

William Dickinson, David Leon, (2009). Finding Failures by Cluster Analysis of Execution
Profiles. Intl. Conf. on Software Engineering, Toronto, Candada, pp. 339-348.

Xue-ying, Ma et al. (2005). A genetic algorithm for test suite reduction. In Proc. IEEE
International Conference on Systems, Man and Cybernetics, pp. 133-139, Hawaii, USA.

Yi Miao, Zhenyu Chen, Sihan Li, Zhihong Zhao, Yuming Zhou (2012). Identifying Coincidental
Correctness for Fault Localization by Clustering Test Cases. International conference on
Software Engineering and Knowledge Engineering, 267-272.

Narendra Kumar Rao Bangole obtained Bachelor Degree in Computer Science and
Engineering from University of Madras, M.Tech in Computer Science from JNTU,
Hyderabad and at present pursuing Ph.D. He has more than 13 years of experience in Area
of Computer Science and Engineering which includes four years of Industrial Experience
and NINE years of Teaching Experience. Research interests include Software Engineering
and Embedded Systems. Currently he is working as Associate Professor in Department of
Computer Science and Engineering at Sree Vidyanikethan Engineering College.

RamaMohan Reddy Ambati obtained his Bachelor Degree in Mechanical Engineering
and Master’s degree in Computer Science Engineering from NIT Warangal and Ph.D
degree from Sri Venkateswara University and at present working as a Professor in
Department of Computer Science and Engineering, Sri Venkateswara University College of
Engineering. His areas of interest include Software Architecture and data mining. He has
more than 28 years of experience in teaching and research.

MAKSIMALIAI DAZNOMIS SEKOMIS GRINDZIAMA TESTINIO RINKINIO
REDUKCIJA NAUDOJANT DU-PORAS
Narendra Kumar Rao Bangole, RamaMohan Reddy Ambati
Santrauka

Siame darbe nagrinéjamas dazny kodo uzdengimo elementy svarbumas naudojant
bandomojo rinkinio redukcija. Buvo naudojamas modulinis didZiausio daznio sekos
grupuojantis algoritmas, turint omenyje paklaidos likuc¢io mazinimo reikalavima. DU-poros
suformuoja pagrindinj kodo uzdengimo reikalavima, kurio toliau paisoma bandomojo
rinkinio redukcijos proceso metu. Sio algoritmo veikimas buvo palygintas su tokiais
algoritmais kaip antai Harrold Gupta ir Soffa (HGS), ir Bi-Objective Greedy (BOG)
algoritmu bei Greedy algoritmu, kai yra uzdengiamos visos DU-poros. Daugeliu atveju
pasicktas 100% uzdengimo kriterijus, iSskyrus kelis bandymus su nepakankamais ir

nepilnais bandomaisiais rinkiniais.

Pagrindiniai zodZiai: programinés jrangos testavimas, testavimo atvejis, kodo
uzdengimo kriterijai, testinio rinkinio redukcija.

288

