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Abstract The article deals with interaction of tumour cells and leucocytes in the cylindrical
cavities. This type of interaction is typical in the cases of development of a tumour in the intestine,
blood vessel or in a bone cavity. Two cases are separated: the case of soft and hard tumour. In the
case of a solid tumour, leucocytes can interact only with the surface cells of the tumour. This type
of interaction is described by the system of two nonlinear first order differential equations. The
expressions of stationary points are obtained and analysis of their stability is performed. In the case
of a soft tumour, leucocytes interact with tumour cells in the whole volume. To describe this type
of interaction the system of two partial differential equations with first order derivatives and initial
and boundary conditions is proposed. An algorithm for computing the numeric solution of the
mathematical model is applied. In this case the diffusion of leucocytes and their ability to reach the
tumour cells in the whole volume of the tumour is included. The algorithm is constructed and the
system is solved numerically. Bifurcation curve is obtained. It separates two qualitatively different
regions on the two parameter plane. Under the same initial parameters in the first region
development of the tumour cells cannot be stopped, whereas in the second region leukocytes defeat
the tumour cells.
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Introduction

Cancer is one of the most difficult diseases and a leading cause of premature death. In
the industrial nations it is the second fatal disease after the cardiovascular diseases (Araujo
and McElwain, 2004). A great research effort is being devoted to find an effective and
permanent cure for cancer. Much progress has been made in understanding the dynamic
and tracking tumour and immune populations over time. As R. P. Araujo and D. L. S.
MCElwain noticed in (Bellomo and Sleeman, 20006) ‘experimentalists and clinicians alike
are becoming increasingly aware of the possibilities afforded by mathematical modelling,
recognising that current medical techniques and experimental approaches are often unable
to distinguish between various possible mechanisms underlying important aspects of
tumour development’. N. Bellomo, N. K. Li and P. K. Maini in their review of selected
topics related to the modelling of cancer (Araujo and McElwain, 2004) take up the
position, that ‘mathematics alone cannot solve the problem of cancer. However, applied
mathematics may be able to provide a framework in which experimental results can be
interpreted, and a quantitative analysis of external actions to control neoplastic growth can
be developed. Specifically, models and simulations can reduce the amount of
experimentation necessary for drug and therapy development’. Furthermore, ‘The
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mathematical theory developed might not only provide a detailed description of the
spatiotemporal evolution of the system, but may also help us understand and manipulate
aspects of the process that are difficult to access experimentally’. (Araujo and McElwain,
2004).

Gatenby and Maini, (Bellomo et al., 2008) even suggest the development of a research
line to be called mathematical oncology.

Enormous number of theoretical and experimental publications is devoted to solid
tumour growth beginning with the early works by Burton (1966) and Greenspan, (1972)
(Burton, 1966), (Greenspan, 1972) culminating in the most recent by Papadogiorgaki M.
and others, developing a continuous three-dimensional model of avascular glioma spatio-
temporal evolution (Papadogiorgaki et al., 2013), Verkman, performing mathematical
modelling of slowed diffusion in the extracellular space (Verkman, 2013), Yang D, and
others, analyzing the free boundary problem modelling tumour regrowth (Yang et al.,
2013).

In this paper we have studied the special cases when tumour develops in the space of
some certain form — cylindrical volume. For example, it can be blood vessel, intestine, or a
bone cavity. Two mathematical models are proposed according to the possibilities to access
the tumour cells. The type of interaction when leucocytes can access only the surface cells
of the solid tumour is described by the system of two nonlinear first order differential
equations. Some statements concerning stationary solutions are proved.

In case, when leucocytes are able to contact the tumour cells in the whole volume (soft
tumour) the system of two partial differential equations with first order derivatives and
initial and boundary conditions is proposed. Aiming to distinguish between the two regions
in a two parameter space where the development of the tumour can be stopped by
leucocytes and where the stopping fails we solve the system numerically. The bifurcation

curve and numerical values of the parameters are provided.

1. Mathematical model of the interaction of tumour cells and leucocytes on the

tumour surface.

Let’s say that two types of cells are in interaction — tumour cells and leucocytes. Suppose
the interaction is possible only on the surface of the tumour. This model can be described
by two simple differential equations.

Denote:

L — number of leucocytes on the tumour surface,

A — total number of tumour cells including its surface,

A, — number of the tumour cells on its surface,

A, — number of tumour surface cells undamaged by leucocyres,

A — total number of undamaged tumour cells (on its surface and inside).

Let’s make a system of two differential equations considering the variables Z and 4 as

the key variables. All other variables will be expressed with respect to them.
Then we have
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[ = g(L)+ Ad(L). 1)
Here the speed of reproduction of leucocytes consists of two summands. The first one —

g(L) — describes the usual speed of leucocytes reproduction. In general it is negative and
such that

9(0)=0, g(L) <0, g'(L) <O. 2)

The second summand reflects the reproduction of leucocytes under the stimulation of
the presence of tumour cells. (It is described in (Yang et al., 2013)).

Equation of the reproduction of tumour cells is

A=G(A)-aA ®,(L). 3)

The function G defines the own speed of the reproduction of the tumour cells. Let’s say that
G(0)=0, G(A)>0. (4)

The member oA ®,(L) defines the impact of leucocytes on the reproduction speed of

the tumour cells.
Let’s eliminate the supplementary variables A and A, from these main equations. Then

we have:
Ao a TAFQ)
1+ F(L) )
~ _ (A
ATy F(L)

The function f defines connection between the number of tumour cells 4; on the
tumour surface and the number of all tumour cells 4, i.e. 4, = f{A). This function depends
on the shape of the tumour. Always f0) = 0. The function F describes here the influence of
leucocytes on the connection of tumour cells. Suppose F(0) = 0 and F(Z) > 0.

Rewriting 4 and 4, in terms of A and L, as it was done in (Yang et al., 2013), we have:

= g(y+ LA
1+ F(L) ©
Aol TR TA,0)
1+ F(L) 11 F(L)
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Suppose leukocytes can fuse together with tumour cells only on the surface of the
tumour and suppose the tumour is allocated in a cylindrical cavity. It could be a blood
vessel, intestine, or a bone cavity. Let’s analyze the system of differential equations (6) and

concretize the functions:

g(L) =L, G(A) =LA @(L)=kL, F(L)=k,L and ®(L)=D,(L).
After substitution in (6) we have:

1
(aA? +bA)k, L

L=—IL+
1+k,L

. | @)
(@A +bA)

A=1,A-
+k,L

, +ak,)L.

1
In the system (7) we have additional function f(A)= aA? +bA which reflects the
shape of the tumour. This function is derived in (Yang et al., 2013). It is used in the case
when the development of a tumour goes in the direction of the cylinder radius. Namely
this case is analyzed below.
Let us define the new variables:

x=k,L, y=A, c=%, k, =d. (8)
2

Then the system (7) can be written as:

1
X=—lx+ (ayE +by)d X F.(xy),
1+X )
1 X
y=1y-(ay’ +by)c—1 =F,(xY).
+X

Statement.
System of differential equations (9) always has at least one nontrivial stationary solution.
To be more specific, when bk —1, <0 the system (9) has two nontrivial stationary

solutions. When bk —1; > 0 it has one nontrivial stationary solution.

Proof.
Stationary solutions of the system of differential equations (9) are obtained from the

system of equations

F.(x,y)=0, 10)
F,(x,y)=0.

Multiplying the first equation of the system (10) by ¢ and the second equation by & and
adding them together we have:

—l,cx +l,dy =0, (11)
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or
l,c
=X 12
y Id (12)
l,c
If we denote Td =k, then y=kx.
2
After elimination of y from the first equation of the system (10) we have:
11
x((bk —1,)x +ak2x2 —1,) = 0. (13)

The equation has one trivial solution x=0, y=0. The other solutions can be obtained after

solving the quadratic equation
11

(bk —1,)x +ak2x2 —1, =0. (14)

When D = a’k +4l, (bk —1,) > 0 the equation has two real solutions

1
[
v, -~k =D (15)
2= k1)

if only the right side of the equation is non negative.
1

So, when bk-I, <0 and —ak? ++/D <0we have two real non trivial stationary

solutions.

1
When bk -1, >0 and —ak? ++vD <0 the equation has no real solutions.
1

Finally when bk -1, >0 and — ak2 ++/D >0 the equation has the only real solution

1

1 _qk2
X2 = ak—+\/5. (16)

2(bk -1,)
Lemma.
For every value of the parameters the following is valid:
1

(bk —1,)(-ak? +/D) > 0. (17)

Proof.

Let’s make some equivalent reorganization which proves the lemma:

1 1
~ak? +J/D<0 < JD<ak? < D<a’k < a’k+4l,(bk-1,)<a’k < bk-I, <0.
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According to the lemma, the case that the quadratic equation analyzed above has no

solutions is impossible.
Finalizing we have:
1. When bk —1; <0 the system (10) has two stationary nontrivial solutions

1 1
(ak? +/D)? ) (ak? +/D)?
4k -1)* " 4bk-1)* |
1 1 (18)
(-ak? ++/D)? ) (-ak? ++/D)?
4bk-1)> " 4(k-1)?
2. When bk =1, >0 the system has one stationary solution
1 1
_gk?2 2 _ak?2 2
(-ak?+VD)’ | (-ak?+4D)” | (19)

4(bk-1)> " 4(bk-1)°

In this way the statement is proved.

In order to make the qualitative analysis of the stationary solutions let us construct

characteristic equation of the system (9):

o _, K
OX 8y a2 _
ok oF =2 +0l+A=0, (20)
OX oy
Here the partial derivatives
ﬁ——I +(ay%+by) d
x @+x)?’
1
%:(%ay 2 b)ldx ,
;Z 1 + X 1)
> C
-2 _ a 2 ,
OX (ay* +by) (1+x)?
1
% ey an)
oy 2 1+x

are calculated at the stationary point (X, Y, ).
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This way we have:

1 1
o(x,y) = _(a;l + 5(;2) =1, -1, —(ay? +by)1+x) 2d + (% ay 2 +b)(1+x)tex, (22)
1 R
— +(ay2 +by)d1+x)>  (Zay 2 +b)dx(l+x)™"
Ax,y) = 1 . S | (23)
—(ay2 +b I, —(=ay 2 +b)ex(1+x)™*
(ay y)(lH)2 2 (2y )eX(1+X)
Let’s calculate the determinant:
1 1

A=-Ll, +1,(ay? +by)d(1+x) 7 + Il(% ay 2 +b)ex(1+x)7. (24)

Statement

Characteristic equation has real solutions in nontrivial stationary points when

I, +1,—AB'd - A'Bc > 24/ ABA'B'cd . (25)

1
Here A(y) = A=ay? +hy, B(x):B=L.
1+X
Proof
Whereas
’ ’ 1 7% ’ ’ 1
A =A=-ay?+b, B, =B'=—— (26)
2 Q1+x)
and o =1, -1, - AB'd + A'Bc, (27)
A=-11,+1,AB'd +1,A'Bc (28)

the discriminant of the quadratic equation can be written down as

D=0c?-4A= |l2 + |22 +d%A’B'? +c?A'°B? + 21,1, —21,dAB’ - 2|,cA'B — (29)

21,dAB’ - 21,cA'B —2ABA'B'cd.
Therefore D =(l, +1, — AB'd — A'Bc)® —4ABA'B’cd .

Whenever X, >0 and y, >0,
we have A(Y,) >0, B(x,)>0, A'(y,)>0 and B’(x,)>0.

When D 20, the characteristic equation has real roots. When D<O0, its roots are in the
set of complex numbers.
The statement is proved.
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Now some conclusions can be drawn concerning nontrivial points. When A < 0, the
stationary point is a saddle point and therefore it is unstable. When D < 0, the stationary
point is a focus point. It means that it is stable when 6 > 0 and it is unstable when 6 < 0.
When D > 0, the stationary point is a nod point. It is stable when A > 0 and 6 < 0.

Stability of the stationary solution can be compared with a tumour which has stopped
growing. It does not change in time. In our case the reason of its stability would be the
stable equilibrium in the contest between leucocytes and tumour cells.

2. Mathematical model of the interaction of leucocytes and tumour cells in the
whole volume of the tumour (in a cylindrical cavity).

Denote u,(tx) — the density of leucocytes at the cross-section of a target tissue at the
distance of x units from the origin of coordinates at the moment 7,

u(t,x) — the density of tumour cells.

Let’s analyze the system of differential equations

2
_aautl =D, —88 uzl —k,u,u,,
X 30
ou, o%u, 30)
E = D2 W— kluluz + kzuz.

In the first equation the reproduction speed of leucocytes consists of two summands.
The first one is the diffusion speed at which leucocytes penetrate into the tumour. It is
proportional to D;. The second summand reflects the losses of leucocytes when they
contact the tumour cells.

The second equation describes the reproduction speed of the tumour cells. The right
side of it consists of three summands. The first one describes diffusion of the tumour cells.

The second summand describes losses of the tumour cells which they suffer because of
the activity of leucocytes. Consider that the fusion of a tumour cell and a leukocyte results
in death of both cells. For this reason the constant of proportionality #; is the same as in the
first equation.

The last summand K,U, shows the reproduction speed of the tumour cells.

Let’s define the following initial conditions

u, (0,x) =u,, =const,

u,(0,x) = p(x), if 0<x<d, (31)

and boundary conditions
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ul(tvo) = Uy,
ul(tfd) = Uy,
Uz(t,O) = Uy,
uz(t'd) = Uy, (32)
ou, (£.0) _ 0
ax 211
au,(td) _
ox 21

Consider Uy, =const, U,, =0, U, =0.

Let us distinguish two key parameters. One of them is 4;. It characterizes the magnitude
of interaction between leucocytes and tumour cells. The parameter depends on immunity
of an organism and it varies subject to different means of treatment.

Another key parameter is #i = #. It indicates the initial number of leucocytes. The
parameter characterizes reaction of an organism to the appearance of tumour cells.

The main task of this paragraph is to find the bifurcation curve which divides the plane
of those two key parameters into two regions. In one of them the development of a tumour
cells cannot be stopped, in another — the number of tumour cells decreases in time.

To solve the problem numerically the software MAPLE was used. The total number of
tumour cells was taken into account

u,(t) = j u, (t, X)dx (33)

and two cases were observed: U,(+90) =0 or U, (+0) = . The curve separating these two

cases is shown in the chart below.

04 -
0.8 -
0
0.6 —

= 0.5

0.2 —

11 01

0.1 0.2 0z 0.4 04& 06 oy ng 0.4 1.0
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Figure 1. The bifurcation curve in the plane of parameters 4;and uo.
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In the region II the tumour cells overcome leucocytes. In the region I leucocytes win.

This problem was solved, when ¢(X) =2, 0<x<1, d=1 k,=0.1, D, =1 D,=0.1.

Calculations were done for 4; varying in the interval [0;1]. Exact values are provided in
the table 1:

Table 1. Calculations 4, varyingin the interval [0;1].

ki 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

u, 1.0168 | 0.516 | 0.355 0.26 0.21 0.18 0.15 0.14 0.12

Conclusions

In this article mathematical models of solid and soft tumour in a cylindrical cavity were
proposed and analyzed. In the case of a solid tumour the conditions of stabilization of the
development of the tumour were determined. It happens (from the mathematical point of
view) when non trivial stationary points — focus point and node point — are obtained.

Stability of the non-zero stationary solution can be compared with a tumour which has
stopped growing. In a sense of physiology, development of the tumour stops at some
certain level. One of the possible mathematical interpretations of this phenomenon is the
stability of the stationary solution. Thus under some certain conditions even the growth of
a malignant tumour can be stopped.

In the case of a soft tumour the stabilization of its development was not observed. The
numerical results of the mathematical modelling demonstrate two possible outcomes: either
the tumour extends or disappears.

The curve presented in the article shows under which value of the parameter 4; having
fixed parameter ;0 = uo (which indicates the number of leucocytes) the qualitative change
of the development of the tumour happens, i.e., transition from U,(+0) =0 to
U,(+0)=0.

On the other hand increase of the parameter k; is caused by variety of physical,
biological and chemical factors.

This model encountering the diffusion of cells is to be developed in the future together
with the specialists of the corresponding field of medicine.
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CILINDRINIO AUGLIO VYSTYMOSI MATEMATINIS MODELIAVIMAS
Algis Kavaliauskas, Aleksas Domarkas
Santrauka

Straipsnyje nagrinéjama auglio lasteliy ir leukocity tarpusavio saveika cilindrinés formos
ertmése. Tokio tipo saveika budinga tuo atveju, kai auglys vystosi Zarnoje, kraujagysléje
arba kaulo ertméje. Isskiriami du atvejai: kieto ir minksto auglio. Kieto auglio atveju
leukocitai gali saveikauti su auglio lastelémis tik ant auglio pavir$iaus. Sis atvejis apraSomas
dviejy netiesiniy pirmojo laipsnio paprastyjy diferencialiniy lygéiy sistema. Gaunamos
stacionariujy tasky iSraiskos, atlickama jy stabilumo analizé. Minksto auglio atveju sistema
sudaro dvi diferencialinés lygtys dalinémis i$vestinémis. Siuo atveju jskaitoma leukocity
difuzija ir galimybé leukocitams pasickti auglio lasteles visame auglio uzimame taryje.
Sudaromas algoritmas ir skaitiniu badu i$sprendziama sistema. Gaunama bifurkaciné kreive

dviejy parametry plokstumoje.

Pagrindiniai ZodZiai: matematinis modeliavimas, difuzija, kokybiné analizé, auglys.
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