COMPUTATIONAL SCIENCE AND TECHNIQUES Publisher: Klaipéda University
Volume 2, Number 1, 2014, 238-252 http://journals.ku.lt/index. php/CST
© Klaipéda University, 2014 Online ISSN: 2029-9966

DOI: http://dx.doi.org/10.15181/csat.v2il.77

AN APPROACH TO SOA DEVELOPMENT METHODOLOGY: SOUP
COMPARISON WITH RUP AND XP

Sandra Svanidzaité
Vilnius University Institute of Mathematics and Informatics, Lithuania
sandra.svanidzaite@gmail.com

Abstract. Service oriented architecture (SOA) is an architecture for distributed applications
composed of distributed services with weak coupling that are designed to meet business
requirements. One of the research priorities in the field of SOA is creating such software design and
development methodology (SDDM) that takes into account all principles of this architecture and
allows for effective and efficient application development. A lot of investigation has been carried out
to find out whether can one of popular SDDM, such as agile methodologies or RUP suits, be
adapted for SOA or there is a need to create some new Service-oriented SDDM. This paper
compares one of Service-oriented SDDM — SOUP — with RUP and XP methodologies. The aim is
to find out whether the SOUP methodology is already mature enough to assure successful

development of SOA applications. This aim is accomplished by comparing activities, artifacts of
SOUP and RUP and emphasizing which XP practices are used in SOUP.

Keywords: SOA, RUP for SOA, SOUP, SDDM.
Introduction

Service-Oriented Architecture is an architecture comprising loosely coupled services, described
by platform-agnostic interfaces that can be discovered and invoked dynamically. Loosely coupled
refers to defining interfaces in such a way that they are independent of each other’s implementation.
In a loosely coupled system, it is possible to swap-out one of the components and replace it with
another and cause no effect to the system (SOA, 2004), (Lewis et al., 2010)

According to (Mittal, 2010) SOA projects potentially suffer from one or more of the
following problems:

e SOA projects are significantly more complex than typical software projects, because
they require a larger, cross-functional team along with correspondingly more
complex inter-team communication and logistics.

e Usually it is hard to define the scope and boundaries of a SOA project. As a result,
the vision for the final result is often not clear at the project’s inception.

e SOA can have a very positive impact on an organization, but, on the other hand,
SOA development and replacement of legacy systems can be very expensive.

e SOA project has a higher risk of failure than other traditional software development projects.

To overcome these problems one of the research priorities in the field of SOA is creating a
proper software design and development methodology that considers all SOA principles and causes
effective and efficient application development of this architecture (Mamaghani et al., 2010). Lots

http://journals.ku.lt/index.php/CST/issue/view/1
mailto:sandra.svanidzaite@gmail.com

Svanidzaité, An Approach to SOA Development Methodology: SOUP Comparison with RUP and XP

of investigations have been carried out to find out which of nowadays used software design and
development methodologies, such as agile methodologies or RUP, suits SOA principles the best, or
whether there is a need of a new SOA design and development methodology.

This paper contributes to finding whether SOUP methodology is already mature
enough to assure successful development of SOA applications by comparing SOUP
methodology (Mittal, 2010), “a methodology which has taken the best elements from RUP and
XP and is targeted specifically at SOA projects” with RUP and XP. The paper focuses on the
comparison of SOUP and RUP activities and artifacts and highlights the practices of XP
that are included in SOUP with the aim to reveal the differences between SOUP, RUP, XP
and to find out whether SOUP methodology covers all the best features of RUP and XP
that are necessary for SOA development.

The remainder of the paper is organized as follows. Section 1 briefly discusses the main
characterization of RUP, SOUP and XP methodologies. Section 2 compares SOUP, RUP
and XP and provides analysis of each SOUP phase. Finally, Conclusion section discusses
and concludes the paper.

1. The main characterization of RUP, SOUP and XP Methodologies

The Rational Unified Process (RUP) is an iterative software design and development
methodology, targeted at object-oriented paradigm solutions. It was created by Rational Software
Corporation. The most important features of RUP are as follows (Kruchten, 2000):

1. RUP is a well-defined and organized software engineering process framework with defined
Roles, Work products and Activities. Role defines a set of related skills, competencies and
responsibilities; Work product represents something resulting from a task, including all the
documents and models produced while working through the process; Activity describes a
unit of work assigned to a role that provides a meaningful result.

2. RUP has two dimensions: static and dynamic. Dynamic dimension is described in terms
of phases (inception, elaboration, construction and transition), iterations and milestones.
Static dimension is described in terms of disciplines (business modeling, requirements,
analysis and design, implementation, test, deployment, configuration and change management,
project management, environment), activities, work products and roles. Main RUP
activities and artifacts are described in details in section 2 of this paper.

3. RUP is an adaptable process framework, intended to be tailored by the
development organizations and software project teams that will select the elements

of the process that are appropriate for their needs.

Extreme programming (XP) is an iterative agile software design and development
methodology created by Kent Beck and described firstly in his book (Beck, 2000). XP is a
lightweight methodology for small-to-medium-sized teams developing software in the face
of vague or rapidly changing requirements. XP life cycle contains exploration, planning,
iteration to release, production, maintenance and death phases, includes 12 practices, grouped
into four areas, derived from the best practices of software engineering (Beck, 2000):

239

240

Computational Science and Techniques, Vol 2, No 1, 2014, 238-252

Group: Fine scale feedback

1.

Practice: Pair Programming. Software is built by two programmers, sitting side by
side, at the same machine. Code is reviewed by at least one other programmer.
Practice: Planning Game. A meeting that occurs once per software development
iteration. The planning process is divided into two parts: 1) Release Planning - is
focused on determining what requirements are included in near-term releases,
and when they should be delivered. 2) Ireration Planning — is focused on
planning the activities and tasks for the developers.

Practice: Test Driven Development. Unit tests (automated tests that test the
functionality of pieces of the code e.g. classes, methods) are written before the
eventual code is produced. This approach is intended to stimulate the programmer to
think about conditions in which his or her code could fail and allows producing fully
tested code with 100 percent coverage during project iteration.

Practice: Whole Team. All contributors to an XP project are one team.
Customer should be on hand at all times and available for questions.

Group. Continuous process

5.

Practice: Continuous Integration. The development team should always keep
the system fully integrated and work with the latest version of the software.
Practice: Design Improvement. XP promotes to develop only what is needed for today
and keep it as simple as possible. After a few iterations code needs to be refactored.
Code refactoring increases cohesion, reduces coupling and removes code duplications.
Practice: Small Releases. The delivery of the software is done via frequent, functional and
tested releases. The small releases help the customer to gain confidence in the progress of
the project. Customer can evaluate software release and in turn provide feedback.

Group. Shared understanding

8.

10.

11.

Practice: Coding Standards. Coding standard is an agreed set of coding rules that the
entire development team must adhere to throughout the project. The standard specifies
a consistent style and format for source code, within the chosen programming
language, as well as various programming constructs and patterns that should be
avoided in order to reduce the probability of defects (Kolawa, 2007)

Practice: Collective Code Ownership. All project programmers are responsible for all the
code. This, in turn, means that everybody is allowed to change any part of the code.
Practice: Simple Design. Build software in a simple design. Keep the software
simple and suited to current functionality.

Practice: System Metaphor. It is a naming concept for classes and methods that
should make it easy for a team member to guess the functionality of a particular
class/method, from its name only. XP teams should develop a common vision
of the system and everyone should understand how the system works, where to

look for functionality, or where to add functionality

GI‘OUP: Progmmmer welﬁlre

12.

Practice: Sustainable Pace. Programmers should not work more than 40 hour in
a week. A key enabler to achieve sustainable pace is frequent code-merge and
always executable, test covered high quality code.

Svanidzaité, An Approach to SOA Development Methodology: SOUP Comparison with RUP and XP

Service-oriented Unified Process (SOUP) is a hybrid software engineering
methodology that is targeted at SOA projects. It is proposed by Kunal Mittal from Sony
Pictures Entertainment (Mittal, 2010) and is based on RUP and XP methodologies.

During the initial SOA project in organization there's a need for some formal software
methodology analogous to RUP that addresses all risks of the project. An agile
methodology like XP might not be formal enough and the most important drawback of it
is the lack of documentation and any up-front design of the system or of its requirements.
However, after initial SOA project is successfully established, continuing to use this formal
methodology for SOA maintenance or development of new SOAs on the top of existing
ones can make the process too complex.

SOUP is a six-phase methodology for SOA application development. SOUP phases
represent a set of activities and artifacts that are critical to the success of a SOA project.
SOUP processes are divided into two categories: 1) for initial SOA development, 2) for
ongoing SOA management and new SOAs development on the top of existing ones.

SOUP includes six processes: incept, define, design, construct, deploy and support that
comes into two slightly different variations: one for initial SOA development and one for
ongoing SOA development. SOUP process model for initial SOA development is provided
in Figure 1.

INCEPT DEFINE DESIGN CONSTRUCT DEPLOY SUPPORT

Figure 1. SOUP Process Model for Initial SOA Development (Mittal, 2010)

Figure 2 shows how SOUP phases map into RUP phases.

Inception Elaboration Construction Transition

INCEPT DEFIRE DESIGN H CONSTRUCT DEPROY SUPPORT

Figure 2. SOUP and RUP Model (Mittal, 2010)

SOUP process model for ongoing SOA Development is provided in Figure 3. Here
(Mittal, 2010) shows how SOUP and XP can be overlaid on each other.

241

Computational Science and Techniques, Vol 2, No 1, 2014, 238-252

INCEPT - DEFINE / DESIGN l;l:&'LEUCT DEPLOY »{ SUPPORT
b (" & 3 o 1
User Release Iteratio T iy ‘
Stories Planning .: n -r"ﬁ,. Ralgase
N
Next lteration

Figure 3. SOUP Process Model for Ongoing SOA Development (Mittal, 2010)

As we see from the Figure 2. and Figure 3. the mapping of SOUP to RUP and XP is
made at a very high abstraction level without providing any details about which RUP
activities and artifacts and XP practices are included in SOUP and which ones are skipped.
In the next section of this paper we will make a deeper analysis and explore how the

elements of SOUP methodology maps into RUP and XP.
2. Comparison of SOUP, RUP and XP Phases

A comparison of SOUP, RUP and XP is carried out in a following way:
1. Each phase of the three methodologies is described:

1) by outlining the purpose and objectives,

2) mapping SOUP and RUP activities to artifacts. SOUP phase description
includes all activities and artifacts of the methodology. RUP phase description
includes only the most important activities and artifacts.

3) defining XP practices that are used in each XP phase. XP is a highly adaptable
methodology that does not provide extensive lists of activities and artifacts and
enforces project team to self-organize by leaving room to decide which activities
should be accomplished and which artifacts should be produced, taking phase
objectives and XP practices into account;

2. The most similar SOUP, RUP and XP phases are grouped together;
3. Each SOUP phase is thoroughly analyzed by defining features taken (and omitted)
from RUP and XP methodologies.

SOUP: Incept phase for Initial and Ongoing SOA Development. The purpose of
this phase for initial SOA development is to understand the business needs for SOA
adoption and how SOA fits within the organization. The objective of this phase is to decide
whether SOA project is profitable (or not) by evaluating project scope and risks.

SOUP Incept phase for ongoing development concerns on building new SOA projects
that consume existing services and expose new ones.

A number of activities and artifacts for initial and ongoing SOUP Incept phase are
described in table 1 (Mittal, 2010).

242

Svanidzaité, An Approach to SOA Development Methodology: SOUP Comparison with RUP and XP

Table 1. Incept Phase of SOUP: Activity to Artifact Mapping

Activity

Artifact

Formulate the vision and the
scope of the project

Vision and scope document. This document outlines the overall vision of the SOA
project. It also provides some boundaries that establish the project's scope.

Define SOA project strategy

Strategy document. It is a high-level plan determining how a project can
be define high-level

requirements in order to determine the advantages of service-oriented

implemented: business analysts business

solutions and propose appropriate strategy.

Accomplish ROI analysis

Return on Investment (ROIL) document. The document outlines costs and
savings of the project. It should determine short-term and long-term benefits.

Create communications plan™

*Only for Initial SOA Development

Communications plan. It explains how SOA implementation team
should collaborate with project stakeholders.

RUP: Inception phase. The purpose of this phase is to assure that project is feasible by developing

vision and scope of the project, identfying stakeholders and assessing project risks. The objectives of this

phase are: 1) to establish the project's scope and boundaries, 2) to define use cases of the system that will
drive critical functionality, 3) to demonstrate at least one systems’ candidate architecture against the

primary use cases, 4) to estimate the overall cost and schedule for the entire project, and 5) evaluate risks.

A number of activities and artifacts for RUP Inception phase are described in table 2

(Kruchten, 2000).

Table 2. Inception Phase of RUP: Activity to Artifact Mapping

Activity

Artifact

Formulate the vision and the

Vision and scope document. This document includes core project's

scope of the project requirements, key features and project boundaries.
Prepare business cases and | Initial business case. This document includes: business context, success
project glossary criteria, financial forecast.

Business use case model. Tt describes business functions and is used as an input to
identify user roles their functions and deliverables in the organization.

Initial project glossary. This document defines a common terminology
that is used consistently across the project and organization.

Prepare initial use cases

Use case model survey. This document lists all use cases and actors that
can be identified at this early stage.

Initial use-case model. Tt is a communication medium that serves as a
contract among the customer, the users and the system developers. It
allows validating that the system will do what it is expected to do and
that system developers will implement what they are expected to
implement. An initial use-case model should be no more than 10% to
20% complete during the initial phase.

Evaluate risks

Initial risk assesment. This document describes risks by providing:
project phase and activity in which risk may happen, current control
measures and actions to be taken.

Plan the project

Project plan. The document shows the phases, activities, iterations of the project.

Plan the development process

Preliminary case of software development process. This document includes
life-cycle model, development team structure description, activities to be
performed, practices to be followed and the artifacts to be produced.

Develop prototypes

Prototypes. RUP highlights such kinds of prototypes as: behavioral, structural,
exploratory, evolutionary prototypes that can be used to reduce risk.

243

Computational Science and Techniques, Vol 2, No 1, 2014, 238-252

XP: Exploration phase. The purposes of this phase are to prepare initial requirements
for the system in the form of story cards and/or user stories and to familiarize with tools,
technology and practices that will be used throughout the project. The objectives of this
phase are: 1) to get enough requirements that will allow formulating system metaphor and
building the whole system architecture skeleton and 2) explore all technologies and tools
that will be used in the project by creating system prototype. XP practices used in this
phase are: System metaphor, Whole Team (Beck, 2000).

XP: Planning phase. The purpose of this initial project planning phase is to agree with
the customer on a date by which the smallest, most valuable set of user stories will be done.
The objectives of this phase are: 1) to prioritize user stories and assign them to first
iteration (and to any other iteration if more user stories are prepared), 2) to estimate the
initial set of user stories, including every design, programming and testing task that is
needed to perform. XP practices used in this phase are: Planning Game (Beck, 2000).

The analysis of SOUP Incept phase for Initial and Ongoing SOA Development. This
phase makes only initial steps to the SOA project and includes only project preparatory
activities, as a result, it differs a lot from RUP Inception phase, as it not only includes project
preparatory activities but contains requirements analysis, risk management, prototyping,
development process planning activities as well (more details can be found in table 2).

In addition to this, SOUP Incept phase contains Define SOA project strategy activity that
is a SOA specific one and cannot be taken neither from RUP, nor from XP methodology.

Furthermore, first XP phase - Exploration is more alike to RUP Inception than to SOUP
Incept phase as it intends to start the project by preparing initial set of requirements,
formulating system metaphor and creating system prototype. On the other hand, XP
System metaphor principle is partly realized in SOUP Inception phase as the boundaries of
SOA and initial high-level requirements are defined allowing project team to formulate
system metaphor.

One of the biggest drawbacks of SOUP Zncept phase and the whole SOUP as well, is that it
does not include any SOA project iteration planning activities likes the ones described in XP
Planning phase. As a result, XP Planning Game practice is skipped in SOUP.

To sum up, SOUP Incept phase differs a lot from RUP Inception, XP Exploration and
Planning phases and most of RUP Inception, XP Exploration phase activities are
accomplished and artifacts are produced in SOUP Define and Design phases where SOA

analysis and design begins.

SOUP: Define phase. The purpose of this the most critical phase for SOA project
during initial SOA development is to define the requirements and develop use cases. The
objectives of this phase are: 1) to fully understand business processes affected, 2) to collect,
define and analyze functional and non-functional requirements by using a formal
requirements-gathering and management process like RUP, 3) to design support and
governance model which explains how organization will support SOA, 4) to prepare a
realistic project plan, 5) to define technical infrastructure that is required to support entire

SOA.

244

Svanidzaité, An Approach to SOA Development Methodology: SOUP Comparison with RUP and XP

The purpose of this phase during ongoing SOA development is to identify services that

are already available and what new services are required for new SOA project.

Requirements gathering activities during ongoing SOA development does not need to

follow formal standards like during initial SOA development. Instead, agile requirements

gathering techniques involving user stories or Class, Responsibilities, Collaborator (CRC)

cards can be used.

A number of activities and a set of artifacts for initial and ongoing SOUP Define phase
are described in table 3 (Mittal, 2010).

Table 3. Define phase of SOUP: Activity to Artifact Mapping

Activity

Artifact

Requirements gathering and
analysis

Functional requirement document: This document provides a detailed
explanation of all business requirements that SOA will group and cover
as business services.

Services Identification™

*Only for Ongoing SOA

Development

Services strategy: This document identifies services that already exist and
can be consumed along with new services that will be exposed.

Non-functional requirements
definition and analysis*

*Only for Initial SOA

Development

Non-functional requirement document. This document describes business

requirements including performance considerations, service-level

agreements (SLAs), operational-level agreements (OLAs), infrastructure
requirements, and etc.

Use caseluser story definition
and realization

Use cases or user stories definition and realization. This document includes
detailed use cases or user stories for all services that will be built.

Overall architecture definition
and documentation

SOA architecture document. This document describes the overall
architecture including hardware and software components and is created
only during initial SOA development.

SOA applicability document. 'This document explains which other
projects fall within the scope of the SOA project and how ongoing
projects can be built on top of the SOA.

For Ongoing SOA projects this document outlines how the existing
SOA framework applies to the project.

Technical infrastructure

definition

*Only for Initial SOA

Development

Infrastructure definition documenrz. 'This document includes detailed
infrastructure deployment diagrams, outlining the servers, and the
connections between them necessary to implement the SOA.

Creating a project plan

Project plan. This document provides detailed plan for the whole project
includes activities, workers, estimates, milestones and etc.

Governance and suppors model. This document describes how SOA will
be supported and governed also it includes considerations such as SLA
monitoring and management.

Test Case Development

*Only for Ongoing SOA

Development

Test plan: This document includes test cases for SOA project.

245

Computational Science and Techniques, Vol 2, No 1, 2014, 238-252

SOUP: Design phase. The purpose of Design phase for initial SOA development is to
translate use case realizations and SOA architecture document into detailed design
documents. The objectives of this phase are: 1) to create detailed design document
consisting data base model, 2) to structure the development process by defining the
technology, coding standards and etc.

SOUP Design phase for ongoing SOA development is really quick, because existing
SOA design from initial SOA development is updated. The only concerns are how to reuse
the existing services and design new services.

A number of activities and a set of artifacts initial and ongoing SOUP Design phase are

described in the table 4 (Mittal, 2010).

Table 4. Design Phase of SOUP: Activity to Artifact mapping
Activity Artifact

Create detailed architecture Detailed design document. This document explains how services are
document with data base model | designed and built

Data base model. This document includes ERD (Entity Relationship
Diagram) of databases used for SOA.

To structure the development Application programming model. This document includes guidelines on

process™ how the development will be structured. It covers such topics as process
and technologies being used, coding standards, deployment procedures

*Only for Initial SOA and so on.

Development

Prepare for testing™ Testing and QA plan. This document includes detailed test and quality
assurance cases.

*Only for Initial SOA

Development

RUP: Elaboration phase. The purpose of this phase is to analyze the problem domain,
build an executable architecture prototype, develop the project plan and eliminate the
project’s highest risk elements. The objectives of this phase are: 1) to define, validate and
baseline the architecture, 2) to baseline the vision and scope of the system, 3) to prepare a
high-fidelity plan for the construction phase, 3) to demonstrate that the architecture will
support base lined vision for a reasonable cost in a reasonable time.

A number of essential activities and a set of essential artifacts for RUP Elaboration phase
are described in the table 5 (Kruchten, 2000).

246

Svanidzaité, An Approach to SOA Development Methodology: SOUP Comparison with RUP and XP

Table 5. Elaboration Phase of RUP: Activity to Artifact mapping

Activity Artifact

Prepare use cases A use-case model (at least 80% complete) that includes all use cases and
actors that were identified in the use-case model survey.

Elicitate non-functional | The list of supplementary requirements. It captures the non-functional

requirements requirements and any requirements that are not associated with a specific
use case.

Create an executable | Software architecture description. This document provides a

architectural prototype and | comprehensive architectural overview of the system, using a number of
architecture description different architectural views to depict different aspects of the system.
Executable architectural prototype. It is a partial implementation of the
system that demonstrates selected system functions and properties,
essentially those showing non-functional requirements.

Revise risks Risk list. This document lists all known risks in a decreasing order of
importance.

Risk identification and management plan. This document describes how
to manage risks associated with a project. It shows what risks
management tasks will be carried out, assigned responsibilities and any
additional resources required.

Revise business case Revised business case. This document includes: business context, success
criteria, financial forecast.

Create a praject development | A development plan for the overall project which includes the coarse-

plan grained project plan, showing iterations and evaluation criteria for each
iteration
Update development process An updated development case. This document includes life-cycle model,

evelopment team structure description, activities to be performed, the
development t tructure descript tivities to be performed, th
practices to be followed and the artifacts to be produced.

Prepare for testing Test case. Tt contains a specific set of test inputs, execution conditions,
and expected results, identified for the purpose of making an evaluation
of some particular aspect.

Test plan. This document defines the test items being targeted, approach

to be taken, resources required and deliverables produced.

XP: Iteration to Release phase. The purpose of this phase is to iteratively perform
system analysis, design, coding and testing and 2-n iteration planning activities. The
objectives of this phase are: 1) to create the whole system architecture during first iteration,
2) to pick the most valuable user stories for customer for the next iteration, 3) to perform
analysis, design, coding and testing activities within all remaining iterations. XP practices
used in this phase are: Pair Programming, Planning Game, Test Driven Development, Whole
Team, Continuous Integration, Design Improvement, Coding Standards, Collective Code
Ouwnership, Simple Design, System Metaphor, Sustainable Pace (Beck, 2000).

The analysis of SOUP Define and Design phases for Initial and Ongoing SOA
Development. These two SOUP phases are highly based on RUP Inception and
Elaboration phases meaning that most of SOUP Define and Design phase’s activities and
artifacts overlap with RUP Inception and Elaboration phase activities and artifacts. The
biggest lacks of SOUP Define and Design phases is no explicit activity for project risk

management and executable SOA architecture prototype creation.

247

Computational Science and Techniques, Vol 2, No 1, 2014, 238-252

In addition to this, SOUP Define phase contains Services Identification, Non-functional
requirements definition and analysis, Overall architecture definition and documentation that
are highly SOA specific and cannot be taken neither from RUP, nor from XP
methodology. Furthermore, SOUP Define and Design phases cover XP lteration to Release
phase analysis, design activities and System Metaphor practice.

SOUP: Construct phase. The purpose of this phase for initial SOA development is to
construct SOA application. The objectives of this phase are: 1) to iteratively develop,
integrate and test SOA, 2) to create user documentation.

Construct phase for ongoing SOA development involves more assembly than
development activities. As more services become available, each SOA project will have more
to reuse and less to build. XP's iterative development techniques are ideal at this stage of
development. In XP, iterative cycles are theoretically set at two weeks, which should be
enough time for one development-QA cycle when building a small service or reusing a set
of services in an SOA environment.

A number of activities and a set of artifacts for SOUP Construct phase are described in

the table 6 (Mittal, 2010).

Table 6. Construct Phase of SOUP: Activity to Artifact Mapping
Activity Artifact

Iterative development Code base that should be stored in repositories.
New services. Any new services that are being exposed and will be ready by
the end of this phase (only for ongoing SOA development).

Iterative QA and testing Test resulss. The results of testing and quality assurance should be stored
and kept available for examination.

User documentation User documentation which was developed in design phase should be kept

up-to-date including detailed documentation of SOA system.

RUP: Construction phase. The purpose of this phase is to develop, integrate and test
all components and application features. The objectives of this phase are: 1) to develop
software product and achieve adequate quality by minimizing development costs and
optimizing resources, 2) to achieve useful versions (alpha, beta) and make descriptions of
the releases.

A number of activities and a set of artifacts for RUP Construction phase are described in
the table 7 (Kruchten, 2000).

Table 7. Construction phase of RUP: Activity to Artifact Mapping

Activity Artifact

Develop software product The software product. The software product integrated on the adequate
platforms.

Write user manuals User manual. This document is used in training sessions and assist users

with product use, operation or maintenance.

Make descriptions of software | A description of the current release. This document describes new
releases functionality.

Test the software Test results. The results of testing and quality assurance should be stored

and kept available for examination.

248

Svanidzaité, An Approach to SOA Development Methodology: SOUP Comparison with RUP and XP

XP: Productionizing phase. The purpose of this phase is to prepare system for release to
customer. The objectives of this phase are: 1) to perform additional tests (system testing, load
testing, installation testing), 2) to improve systems’ performance before the system is released to the
customer, 3) to create documentation such as system documentation (includes an overview of the
technical architecture, the business architecture, the high-level requirements for the system, a
summary of critical design decisions, architecture-level diagrams, and important design models),
operations documentation (includes system dependencies with other systems, the nature of its
interaction with other systems, databases, and files, references to backup procedures, the expected
load profile of the system and troubleshooting guideline), support documentation (includes training
materials specific to support staff, all user documentation to use as reference when solving problems,
escalation procedures for handling difficult problems), user documentation (including reference
manual, a usage guide, support guide and training materials). At this phase, new changes may still
be found and the decision has to be made if they will be included in the current or next release. The
postponed ideas and suggestions are documented for later implementation during, e.g., the
maintenance phase. XP practices used in this phase are: Test Driven Development, Whole Team,
Continuous Integration, Design Improvement, Small Releases, Sustainable Pace (Beck, 2000).

The analysis of SOUP Construct phase for Initial and Ongoing SOA
Development. The purposes of SOUP Construct phase and of RUP Construction phase are
almost the same, although RUP gives attention to software releases. SOUP omits software
release description activity. SOUP Construct phase is highly based on XP Iteration to Release
and Productionizing phases and incorporates Pair Programming, Test Driven Development,
Whole Team, Continuous Integration, Design Improvement, Coding Standards, Collective Code
Ownership, Simple Design, System Metaphor, Sustainable Pace practices.

SOUP: Deploy phase. The purpose of this phase for initial and ongoing SOA project is
to deploy SOA project in production. In this phase, either SOA application or new services
are launched. The objectives of this phase for initial SOA project are: 1) to create SOA
deployment model, 2) to create SOA application and support models.

A number of activities and a set of artifacts for SOUP Deploy phase are listed in the
table 8 (Mittal, 2010).

Table 8. Deploy phase of SOUP: Activity to Artifact Mapping

Activity Artifact

Create deployment model* Deployment model. This document describes the structure of SOA
deployment.

*Only for Initial SOA

Development

Create application model* Usage model. This document gives guides how to use SOA. It becomes
important as various project teams begin to use new architecture.

*Only for Initial SOA

Development

Create support model* Ongoing support levels model. This document systematically organizes
updates of governance and support model that was developed in the

*Only for Initial SOA Define phase.

Development

249

Computational Science and Techniques, Vol 2, No 1, 2014, 238-252

SOUP: Support phase. The purpose of this phase for initial SOA project is to ensure
ongoing SOA support (Mittal, 2010). The objectives of this phase are to support SOA by
making bug fixes, trainings and new functionality development.

During Support phase for ongoing SOA project support is provided only for new
services. In doing so, support model laid down during the initial SOA development is
followed.

SOUP provides only a number of activities that should be accomplished during this
phase. The list of activities is as follows: Maintenance, Bug fixes, Training, Continuous

project buy-in.

RUP: Transition phase. The purpose of this phase is to move the software product to
the end user by accomplishing beta testing, making conversions of operational data bases,
operating parallel with existing legacy system and training the users. The objectives of this
phase are: 1) to achieve user self-supportability, 2) to achieve stakeholder approval that
deployment baselines are complete and consistent with the evaluation criteria of the vision,
3) to achieve final product baseline.

RUP provides only a number of activities that should be accomplished during this
phase. The list of activities is as follows: 7o organize and provide training for the end users,
To fix the remaining bugs and enhance the performance and usability, Assess the deployment
baselines against the vision and the acceptance criteria for the product. (Kruchten, 2000)

XP: Maintenance phase. The purpose of this phase is to keep the system in the
production while at the same time produce new iteration. This phase encompasses the
Planning, Iterations to Release, and Productionizing phases for iterations 2 through NV of the
system. The objectives of this phase are: 1) produce new functionality; 2) keep existing
system running; 3) refactor system; 4) prepare new user stories for next iterations. XP
practices used in this phase are: Pair Programming, Planning Game, Test Driven
Development, Whole Team, Continuous Integration, Design Improvement, Small Releases,
Coding Standards, Collective Code Ownership, Simple Design, System Metaphor, Sustainable
Pace (Beck, 2000).

XP: Death phase. The purpose of this phase is to close the project. Death phase is when
the customer does no longer have any user stories to be implemented. The objectives of this

phase are: 1) to create final system documentation and 2) to close project. XP practices
used in this phase are: Whole Team, System Metaphor (Beck, 2000).

The analysis of SOUP Deploy and Support phases for Initial and Ongoing SOA
Development. SOUP Support phase differs a lot from RUP Transition phase as it is aimed
at software support that should be carried after software deployment. RUP 7ransition phase
is aimed at the last tasks that should be done before software deployment to production.

In addition to this, SOUP Deploy phase contains Create deployment model, Create
application model, Create support model activities that are SOA specific and cannot be taken
neither from RUP, nor from XP methodology.

250

Svanidzaité, An Approach to SOA Development Methodology: SOUP Comparison with RUP and XP

SOUP Support phase is highly based on XP Maintenance phase and incorporates Pair
Programming, Planning Game, Test Driven Development, Whole Team, Continuous
Integration, Design Improvement, Small Releases, Coding Standards, Collective Code
Ouwnership, Simple Design, System Metaphor, Sustainable Pace practices. XP Death phase is
not covered in SOUP.

Conclusion

SOA is a new software development paradigm and the methodologies for successful
SOA implementation are still under research. The aim of this paper was to compare
SOUP - a new software development methodology for service-oriented paradigm with
RUP - a methodology, which has provided a large database of knowledge and best practices
from successful developments and is targeted at object-oriented paradigm solutions and
with XP- an iterative agile methodology for small project teams.

Our research revealed that SOUP methodology has at least few big drawbacks:

e it does not extensively address project risk management activities as RUP

methodology suggests;

e it does not include any project iteration planning activities likes the ones described
in XP Planning phase, as a result XP Planning Game practice is not included in
SOUP;

e it does not include software release management activities as RUP methodology
suggests;

All these three SOUP lacks are of great importance for successful SOA development,
because SOA projects are significantly more complex than typical software projects, they
require larger, cross-functional team, the use of new unexplored technologies and tools,
iterative development with frequent software releases resulting in a higher risk of failure
than other traditional software development projects.

To sum up, listed drawbacks makes SOUP methodology immature and in need of
reconsideration and improvement. At this moment, SOUP methodology can be qualified
only as a candidate methodology for SOA development. It should be revised, tested and

improved to assure successful SOA implementations.

References

Beck, K. (2000). Extreme Programming Explained: Embrace Change 2nd Edition Addison-Wesley.

Kolawa, A., Huizinga, D. (2007). Automated Defect Prevention: Best Practices in Software
Management. Wiley-IEEE Computer Society Press.

Krunchen, P. (2000). The Rational Unified Process, An Introduction, Second Edition, Addison
Wesley.

251

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html

Computational Science and Techniques, Vol 2, No 1, 2014, 238-252

Lewis, G., Smith, D. B., Kontogiannis, K. (2010). A Research Agenda for Service-Oriented
Architecture (SOA): Maintenance and Evolution of Service-Oriented Systems. SEIL
heep://www.sei.cmu.edu/reports/10tn003. pdf

Mamaghani, N. D., Mousavi, F., Hakamizadeh, F., Sadeghi, M. (2010). Proposed Combined
Framework of SOA and RUP. Information Sciences and Interaction Sciences (ICIS), 2010 3rd
International Conference on. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5534806

Mittal, K. (2010). Service Oriented Unified Process (SOUP).
htep://www.kunalmittal.com/html/soup.html

SOAPRPC (2004). Service-oriented architecture: A brief introduction,
http://soaprpc.wordpress.com/2009/05/06/service-oriented-architecture-a-brief-introduction/

S. Svanidzaité is a doctoral student at Vilnius University Institute of Mathematics and
Informatics. Her main research interests include software processes, service-oriented architectures,
software requirements engineering, especially service-oriented requirements engineering and service-
oriented architectures design and development methodologies.

AN APPROACH TO SOA DEVELOPMENT METHODOLOGY: SOUP
COMPARISON WITH RUP AND XP
Sandra Svanidzaité
Summary

SOA - tai naujas programinés jrangos architektiiros modelis, kurio pagrindiné sudedamoji dalis
yra paslauga. Paslauga — tai pasikartojanti verslo uzduotis. | paslaugas orientuotos architektiiros
kirimo metu visi verslo reikalavimai yra grupuojami j vieng nuo kitos nepriklausancias paslaugas,
Sios paslaugos yra komponuojamos tarpusavyje. Tai nauja programy sistemy karimo paradigma
neturinti jai pritaikyty metodiky, kurios uztikrinty sékminga SOA kiirima. Sio straipsnio tikslas yra
palyginti tris metodikas: RUP metodika, kuri yra skirta objektiskai orientuotos paradigmos
sistemoms kurti, agilia XP metodika, ir SOUP metodika, kuri yra sukurta RUP ir XP metodiky
pagrindu, siekiant issiaiskinti ar SOUP metodika yra pakankamai i$sami ir tinkama SOA sistemoms
kurti.

Pagrindiniai ZodZiai: SOA, RUP for SOA, SOUP, SDDM.

252

http://www.sei.cmu.edu/reports/10tn003.pdf
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5534806
http://www.kunalmittal.com/html/soup.html
http://soaprpc.wordpress.com/2009/05/06/service-oriented-architecture-a-brief-introduction/

