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In this paper a stochastic adaptive method has been developed to solve stochastic linear problems
by a finite sequence of Monte-Carlo sampling estimators. The method is based on the adaptive
regulation of the size of Monte-Carlo samples and a statistical termination procedure taking into
consideration statistical modelling accuracy. Our approach distinguishes itself by the treatment of
accuracy of the solution in a statistical manner, testing the hypothesis of optimality according to
statistical criteria, and estimating confidence intervals of the objective and constraint functions. To
avoid “jamming” or “zigzagging” solving a constraint problem we implement the e—feasible
direction approach. The proposed adjustment of a sample size, when it is taken inversely
proportional to the square of the norm of the Monte-Carlo estimate of the gradient, guarantees
convergence a. s. at a linear rate. The numerical study and examples in practice corroborate
theoretical conclusions and show that the developed procedures make it possible to solve stochastic
problems with sufficient accuracy by the means of an acceptable size of computations.

Introduction

In tasks of resource and finance planning, job scheduling management, various problem
with nondeterministic parameters and various kind of uncertainty are often being faced.
This uncertainty often is described by statistical probabilistic methods. These tasks are
solving by stochastic linear and nonlinear methods. Two-stage or multistage stochastic
linear problems are extension of the classic linear programming, when parameters of the
problem may be random variables.

Stochastic linear programming was developed on basis of the linear programming at
second half of 20" century by demand to solve technical, economic and financial problems.
Linear programming problems couldn’t evaluate uncertainty of planning parameters. Usage
of random parameters in linear programming models leads to complicated nonlinear
optimization problems, which usually couldn’t be solved by direct nonlinear programming
methods. Stochastic methods for solving stochastic problems must be developed and
applied. These stochastic methods generalize deterministic linear and nonlinear
programming methods.

Main problems for stochastic programming are complicated computation of precise
values of the objective function and verification of the optimality of the solution. Solving of
the stochastic linear problems under admissible accuracy is actual and imperfect

investigated theoretical and practical problem.
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Two stage stochastic linear programming can be applied at various fields: electric energy
production, manpower management, portfolio management, logistics, analysis of the
biological systems, etc.

Let us describe example of the power plant investment planning. An energetic concern
must invest in a system of power plants to meet its current and future demand for electrical
power. These plants were to be built for the first year only, and were expected to operate
over the next 15 years. The budget for construction of power plants was $10 billion, which
was to be allocated for four different types of plants: gas turbine, coal, nuclear power, and
hydroelectric. Power plants were priced according to their electric capacity, measured in
gigawatts. The objective was to find the power plant allocation which had minimized the
sum of the investment cost and the expected value of the operating cost over 15 years. The
operating cost was stochastic due to uncertainty in future demand and each year demand
grows with some rate.

Stochastic programming deals with a class of optimization models in which some data
may be subject to significant uncertainty. Such models are appropriate when data evolve
over time and decisions have to be made prior to observing the entire data streams.
Although widespread applicability of stochastic programming models has attracted
considerable attention of researchers, stochastic linear models remain one of more
challenging optimisation problems.

Methods based on approximation and decomposition are often applied to solve
stochastic programming tasks (see, e.g., Ermolyev and Wets, 1988, Prekopa, 1995, Marti,
2005, etc.), however, they can lead to very large-scale problems, and, thus, require very
large computational resources. Therefore the study of stochastic programming algorithms
has led to alternative ways of approximating problems, some of which obey certain
asymptotic properties. This reliance on approximations has prompted to study asymptotic
convergence of solutions of approximate problems to a solution of original (see, Rubinstein
and Shapiro, 1993, Sen, 2001, Marti, 2005, etc.), and consider adaptive methods for
approximations (Shapiro and Homem-de-Mello, 1998, Higle and Sen, 1999). In this paper
we have developed an adaptive approach for solving stochastic linear problems by the
Monte-Carlo method based on asymptotic properties of Monte-Carlo sampling estimators.
This approach is grounded on the treatment of a statistical simulation error in a statistical
manner and the rule for iterative regulation of the size of Monte-Carlo samples
(Sakalauskas, 2002, Sakalauskas, 2004).

Let us consider a two-stage stochastic optimization problem with a complete recourse:

F(X):C'XJFE{Q(X’%:)}_)XSSLQ{Q (1)
subject to a feasible set
D={x\ A-x=b, xe 9"} 2)
where
Q(x,&)=min [q-y|W-y+T-x<hyeR] 3)
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vectors b, g, b and full rank matrices A, W, T are of appropriate dimensionality. Let the
feasible set D be nonempty and bounded. Assume vectors ¢, 4 and matrices W, 7 be
random in general, and, consequently, depending on an elementary event £ €Q from a
certain probability space (Q,Z,P). Thus, under uncertainty the modelled system operates in
an environment of uncontrollable parameters, which are modelled using random variables.
Hence, the performance of such a system can also be viewed as a random variable. Let the
measure P be absolutely continuous and defined by a probability density

function p(x,) :R"xQ — R, , depending on the decision variable x in general.

Moreover, assume that the solution of the second stage problem (3) and the values of the
function Q almost surely (a. s.) exist and are bounded.

1. Stochastic differentiation and Monte-Carlo estimators

In this section we discuss some basic ideas applied in stochastic gradient search in two-
stage programming with recourse. The procedures of gradient evaluation are often
constructed by expressing a gradient as an expectation and then evaluating this expectation
by the means of statistical simulation (see, e.g., Rubinstein and Shapiro, 1993, Marti,
1996, Shapiro, 2000, Sakalauskas, 2002).

We treat the problem (1) as an optimization problem of an expected value function
subject to linear deterministic constraints. Thus, in general we deal with a nonlinear
stochastic optimization problem:

F(x)=Ef(x,£) > min (4)

xeDcR]

where the objective function is expectation of the random function f(x,&)=c-x+Q(x,&)
depending on random vector &, defined by the distribution density function p(x, ), and
the feasible set xe D =R" is a nonempty, bounded and convex linear set in general.

First, let us consider the expectation
F()=Ef(x,&) = [ f(xy)-p(x, y)dy 5)
Q

when function fand density function p are assumed differentiable with respect to x for any

xeDc SRT_ and any y € S(X), S(x) = {y‘ p(x,y) >0} is a support of random vector.

Differentiability of integrals of such kind has been studied rather deeply, and a
technique for stochastic differentiation to express such an objective function and its
gradient both together as expectations in the same probability space (see, Rubinstein, 1983,
Uriasyev, 1994, Shapiro and Homem-de-Mello, 1998, Prekopa, 1999, Ermolyev et al,
2003, etc.) exists. It is not difficult to see that the vector-column of the gradient of a
function (5) could be expressed as (Sakalauskas, 2002)

291



Computational Science and Techniques, Vol 2, No 2, 2014, 289-312

V.F()=E(V, f(x5)+(f(x.&)— (X EL) V,Inp(x,&)=Eg(x.¢) 6)

where the generalized gradient
1 dp(x,y),yezs(xy
ViInp(xy) =4 p(xy) dx
0, yS(x)

1 dp(xy)
p(x,y) dx

see that it is possible to express expectation and its gradient through a linear operator from

is defined and it is assumed that uniformly

< 0, yeS(X),XeD. We

the same probability space. Hence, operators (5) and (6) can be estimated by the means of
the same Monte-Carlo sample. Solving the problem (4) suppose it is possible to get finite

sequences of realizations (trials) of & at any pointX € D < R . Hence, here we assume that

Monte-Carlo samples of a certain size N are provided for any:

Y =(y'hyi .y, 7)

where y' are independent random variables identically distributed at density p(X,-).

Sampling estimator of the objective function is very simple and can be computed as:
. 1N _
FO)==> f(xy'). ®)
N <=

Sampling variance can also be computed what is useful to evaluate accuracy of an estimator (8):

D?(x) :Ni_lzil(f(x, y)—F(x)2. 9)

The gradient is evaluated using the same random sample:

~ 1 N .
GO =12.,,9(xY"). (10)

We use the sampling covariance matrix

200 = 3 (9 y)-6)-(g(x y)-G)’ (1

later on for normalising a gradient estimator (10).
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We examine several estimators for stochastic gradient following from expression (6).
Assume randomness be exogenous and non affected by a decision variable, i.e. density

p() does not depend on the variable x. In this case we obtain from (6):

g(X, y):vxf(x’ y) (12)

Let us consider the analytical approach (AA) to estimate (12) two-stage stochastic
programming with recourse (1). Indeed, by the duality of linear programming we have that

F(x)=c-x+E{maxu [(h—T-x)-u |lu-W" +q>0, UE‘RQJ}. (13)

Further it can be derived that under the assumption on the existence of a solution to
the second stage problem in (3) and continuity of the measure P, the objective function (4)
is smoothly differentiable and its gradient is expressed as

VXF(X)zE(gi(x,.f )) (14)
where
gl(x,g):c—T-u* (15)
is given by a set of solutions of a dual problem

(h=T-x)" -u" =max,[(h-T -x)" -uju-WT +g>0, ueR™

(details are given in Rubinstein and Shapiro, 1993, Shapiro, 2000, etc.).
Let us compare the estimate (14), (15) with several ones. Since the analytical gradient is
not always available, the finite difference (FD) approach is of interest. In this approach each

sth

i component of the stochastic gradient 92 (X, & ) is computed as:

g|2(X,Y)= f(X+5§|,5Y)—f(X,Y)’ (16)

- is the vector with zero components except i, equal to 1, § is some small value.
i p p q

Since the expression (16) requires computation of the function 7n+/ times, the
Simulated Perturbation Stochastic Approximation (SPSA) approach (Spall, 1992), which

requires only one additional function value computation is also examined:
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f(X+o-v,y)—f(x=0-v,y)
2.8 ’
where v is the random vector obtaining values 1 or -1 with the probability of p=0.5 (see
Spall, 1992), & is some small value.
Let us additionally consider the Likelihood Ratio (LR) approach to obtain the
expression of the stochastic gradient, which also requires only one additional function

(17)

g3(x,y) =

computation (Rubinstein, 1983). Say a random error in the objective function is an
additive noise. Then we may change the variables in the integral (5) and evaluate the
stochastic gradient using (6):

9° (% y) =(fF(x+y)=(x)-V,Inp(y). (18)
Numerical comparison of the estimators (15), (16), (17) and (18) is given in Section 5.

2. Stochastic procedure for optimisation

The gradient search approach with projection to a feasible set would be a chance to
create optimizing sequence; however, the problems of “jamming” or “zigzagging” are
typical in this case. To avoid them we implement the & —feasible direction approach.

Let us define the set of feasible directions as follows:

V(x)={g eR"

Ag=0,Y,..,(g, <0, if xj=o)}, xeD. (19)

Denote, g is projection of the vector g onto the set U. Since the objective function is

differentiable, the solution X € D is optimal if (Bertsekas, 1982):
VF(x), =0. (20)

Assume a certain multiplier p >0 is given. Define the function p,:V(X)—> R, by

) . . X
p.(9)=min? 5, min(=1)¢, 3,.,.. (9, >0), 1)
9;>0. Jj
1<j<n

p (@) =p, ifVy.,(9; <0). Thus, (X+p-g)e D, when p=p(g9), for any
geV (X), Xe D, Now, let a certain small value £>0 be given. Then we introduce the
function &, :V(X) > R,

£.(9) =,§-max{min{xj,ﬁ-gj i, Jycjan (gj >0),

I<j<n
g;>0
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£,(9)=0,ifV_,. (9, <0), and define the & -feasible set

V. (X) ={g eR'[Ag=0,,.., (g, <0, if (0<x ng(g)))} (22)

Now we start developing the procedure of stochastic optimization. Let some initial

point x% €D be given, a random sample (7) of a certain initial size N be generated at this
point, and Monte-Carlo estimates (8), (9), (10), (11) be computed.

For instance, the starting point can be obtained as a solution of a deterministic linear
problem:

(x°,y*) =argmin[c-x+q-y| A-x=b,W-y+T-x<h, yeR",xeR"]. (23)
X,y

The iterative stochastic procedure of gradient search could be used further:
Xt = xt _pt ~é(Xt) , (24)

where pt =Pt (ét) is a step-length multiplier defined by (21), and é:f; = G(Xt )V (xt) is
e

projection of a gradient estimator to the € -feasible set.

Let us consider the choice of the Monte-Carlo sample size in more detail. Note, that
there is no great necessity starting optimisation to compute estimators with high accuracy
because then it suffices only to approximately evaluate the direction leading to the
optimum. Therefore, one can obtain not so large samples at the beginning of optimum
search and, later on, increase the size of samples so as to get the estimate of the objective
function with desired accuracy just at the time of decision making on finding a solution to
an optimisation problem. We can pursue this purpose by choosing a sample size at next
iteration inversely proportional to the square of a gradient estimator from the current

iteration:

p-C

t+1
>
N > 5

(25)

t At
p |G

where C >0 is a certain constant. On the other hand, this rule enables us to ensure the
condition of proportionality of stochastic gradient variance to the square of the gradient
norm, which is sufficient for convergence. Thus, under certain wide conditions of the

existence of expectations of estimators this rule guarantees convergence of a. s. to an

optimal solution, i.e., starting from any initial approximation x>eD andN°>1,
formulae (24), (25) define sequence {Xt, Nt};o so thatX' € D, and the values p >0,

& >0, C >0 exist so that

295



Computational Science and Techniques, Vol 2, No 2, 2014, 289-312

2

lim
t—>w

=0 (mod (P)), (26)

Xt

\%= (Xt)Vg ( )

for 0<p<p,0<e<1l, C=C. Proof is given in (Sakalauskas, 2004).

Let us discuss the choice of parameters of the method. Step length p in (24) can be
determined experimentally. The choice of the constant C or that of the best metrics for
computing the stochastic gradient norm in (24) requires a separate study. For instance, the

choice C =n-Fish(y,n, Nt — n) ~ ;(f(n), where Fish(y,n,N'=n) is the -quantile of the

Fisher distribution with (n, N n) degrees of freedom, and the estimation of the gradient
norm in metric induced by the sampling covariance matrix (11), ensure that a random error of
the stochastic gradient does not exceed the gradient norm approximately with the probability of
1—y . Thus, we propose the following version of (25) for regulating the sample size in practice:

N™ = min max([ n~-|:i:¢,h(7/,r1,N‘_l—n)~ }rn, Nminj’ N, 27)
P (G (Z(X) ™ (G(x')

where minimal N, (usually ~20-100) and maximal V,,. (usually ~ 10000-20000) values
are introduced to avoid great fluctuations of the sample size in iterations. Note that V.
may also be chosen from the conditions of a permissible confidence interval of the estimates
of the objective function.

3. Statistical testing of the optimality hypothesis

A possible decision on finding an optimal solution should be examined at each step of
the optimization process. Since we know only Monte-Carlo estimates of the objective
function and that of its gradient, we can test only the statistical optimality hypothesis. As
far as a stochastic error of these estimates in essence depends on the size of Monte-Carlo
samples, a possible optimal decision could be made, if, first, there is no reason to reject the
hypothesis of equality to zero of a gradient, and, second, the sample size is sufficient to
estimate the objective function with desired accuracy.

Note that the distribution of sampling averages (8) and (10) can be approximated by the
one- and multidimensional Gaussian laws (see, e.g., (Bhattacharya and Ranga Rao, 1976).
Therefore, it is convenient to test the validity of a stationarity condition (20) the means of
the well-known multidimensional Hotelling 7%-statistics (Krishnaiah and Lee, (1980)).
Hence, the optimality hypothesis could be accepted for some point x* with
significancel— , if the following condition is met:

(N'=n)-(G(x"))-(Z(x")) - (G(x"))/n < Fish(z,n,N* —n). (28)

Next, again we can use asymptotic normality and decide that the objective function is
estimated with permissible accuracy &, if its confidence bound does not exceed this value:
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2:m,-D(x')/JN' <&, (29)
where 77, is the f -quantile of a standard normal distribution. Thus, the procedure (24) is

iterated adjusting the sample size according to (25) and testing conditions (28) and (29) at
each iteration. If the latter conditions are met at some iteration, then there are no reasons
to reject the hypothesis on finding the optimum. Therefore, there is the basis to terminate
optimization and make a decision on the optimum finding with permissible accuracy. If at
least one condition out of (28), (29) is not met, then the next sample is generated and
optimization is continued. As it follows from the previous section, optimization should be
terminated having generated the finite number of Monte-Carlo samples.

4. Computer simulation of stochastic gradient estimators

In this section a computer simulation study on the gradient estimators considered in
Section 3 is presented using testing examples given in Appendix.

Let us consider Example 1 (see Appendix). Due to symmetry this function has the
minimum at the pointX, = 0. Thus, 400 Monte-Carlo samples of the size N = (1-10, 20,
40, 60, 80, 100) were generated at this point and 7Z-statistic in criterion (20) was
computed for each sample using the estimators (10), (11) and various stochastic gradients
given by (15)-(18). The hypothesis on the difference of empirical distribution of this

statistics from Fisher distribution was tested according to the criteria ? and Q2. The
values of @? and Q statistics computation for the estimator (15) on the variable number
and sample size are given in Table 1 and Table 2. The critical value ? =0.46 (p=0.05),

and that of the next one is Q%=2.49 (p=0.05). The values of statistics exceeding the critical
value are bolded. Thus the minimal size of the Monte Carlo sample necessary to
approximate the distribution of the Hotelling statistics by the Fisher distribution depends
on the dimensionality of the task n. Thus the requiring Monte-Carlo sample size
depending on dimensionality is given in Table 3. Similar results are obtained for other

estimators, too.

Table 1. @° criteria results by the number
of variables and sample size

N 50 100 200 500 1000
n
2 0.30 0.24 0.10 0.08 0.04
3 0.37 0.12 0.09 0.06 0.04
4 0.19 0.19 0.13 0.08 0.04
5 0.75 0.13 0.12 0.08 0.06
6 1.53 0.34 0.10 0.10 0.08
7 1.56 0.39 0.13 0.08 0.09
8 1.81 0.42 0.27 0.18 0.10
9 4.18 0.46 0.26 0.20 0.12
10 8.12 0.56 0.53 0.25 0.17
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Table 2. QO criteria results by the number of variables and sample size

N 50 100 200 500 1000
n
2 2.57 1.14 0.66 0.65 0.42
3 2.78 0.82 0.65 0.60 0.27
4 3.75 1.17 0.79 0.53 0.31
5 4.34 1.46 0.85 0.64 0.36
6 8.31 2.34 0.79 0.79 0.76
7 8.14 2.72 1.04 0.52 0.45
8 10.22 | 2.55 1.87 0.89 0.52
9 20.86 | 2.59 1.57 1.41 0.78
10 40.57 | 3.69 3.51 1.56 0.98

Table 3. Requiring Monte-Carlo sample size by the number of variables

Number of Monte-Carlo
variables sample size
10 500
20 1000
40 2200
60 3300
80 4500
100 6000

Similar experiments were performed with Example 2 and Example 3. The optimum
point in these examples was established by stochastic optimization. The values of @® and

Q2 statistics computation for Example 3 on the sample size are given in Table 4.

Table 4. @® and € criteria results by the sample size

2 . . 2 . .
Monte-Carlo @ criteria Q) criteria

sample size (Critical value (Critical value
0.46) 2.56)
500 1,95 9.53
700 0,64 3,39
800 0,61 3.33
900 0,49 2,57
1000 0,30 1,89
1500 0,12 0,80
2000 0,06 0,56

As follows from the results of this simulation, the distribution of the Hotelling statistics
can be approximated by the Fisher distribution appropriately choosing the sample size.
Further dependencies of the frequency of the optimality hypothesis (gradient equality to zero)

according to the criterion (28) on the distance I = ‘X - X+‘ to the optimal point and the Monte

Carlo sample size N for various gradient estimators were studied. The purpose of this study is to
answer how the used estimators are good to reject the hypothesis of optimality at the point of
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solution which differs from the optimal one. These dependencies for n=2 (Example 1) and more
variables are presented in Fig. 1-5 (for confidence a =0.95). Thus, the computation results show
that the AA (15) and the FD approach (16) provide estimators for reliable checking of the
optimality hypothesis in a wide range of dimensionality of the stochastic optimization problem
(2<n<100). However, the SPSA (17) and the LR (18) estimators can be applied for stochastic
gradient estimation only for the tasks of not very large dimensionality: 1<n<20. Similar results

were obtained investigating Example 2 and Example 3.

AA estimator for stochastic gradient FD estimator for stochastic gradient
100% 100%
90% 90%
80% 80%
70% —N=100 70% — N=100
60% ——N=200 60% —— N=200
50% N=500 50% N=500
40% N=1000 40% N=1000
30% 30%
——N= —— N=5000
20% 5000 20%
10% 10%
0% E— 0% —
0 0.1 0.2 0.3 0.3
SPSA estimator for stochastic gradient LR estimator for stochastic gradient
100% 100%
90% \ 90%
80% 80%
70% —— N=100 20% ——N=100
60% — N=200 60% — N=200
50% N=500 50% N=500
40% N=1000 40% N=1000
30% 30%
—N= —— N=5000
20% 5000 20%
10% ] 10% ]
0% s 0% ===
0 0.1 0.2 0.3 0.4 0.5 04 05 06 07 08
Fig 1. Frequency of the optimality hypothesis (n=2).
AA estimator for stochastic gradient FD estimator for stochastic gradient
100% S 100%
90% 90%
80% 80%
70% —N=100 70% — N=100
60% — N=200 60% —— N=200
50% N=500 50% N=500
40% N=1000 40% N=1000
30% 30%
—N= —— N=5000
20% 5000 20%
10% 10%
0% 0%
0 0.1 0.2 0.3 0.3
SPSA estimator for stochastic gradient LR estimator for stochastic gradient
100% T 100%
90% P~ 90% =
80% 80% 1
70% —N=100 70% ——N=100
60% —— N=200 60% —— N=200
50% N=500 50% N=500
40% N=1000 40% N=1000
30% 30%
—— N=5000 —— N=5000
20% 20%
10% 10%
0% 0%
0 0.1 0.2 0.3 0.4 0.5 04 05 06 07 08

Fig 2. Frequency of the optimality hypothesis (n= 10)
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AA estimator for stochastic gradient FD estimator for stochastic gradient
100% 100%
90% — 90% I —
80% 80%
70% —N=100 70% —— N=100
60% —— N=200 60% —— N=200
50% N=500 50% N=500
40% N=1000 40% N=1000
30% —— N=5000 30% —— N=5000
20% 20%
10% 10%
0% 0%
0 0.1 0.2 0.3 0 0.1 0.2 0.3
SPSA estimator for stochastic gradient LR estimator for stochastic gradient
100% — 100% T F——— ————
90% — — 90% +———
80% 80%
70% —N=100 70% — N=100
60% —— N=200 60% —— N=200
50% N=500 50% N=500
40% N=1000 40% N=1000
30% — N=5000 30% — N=5000
20% 20%
10% e 10%
0% 0% i et
0 0.1 0.2 0.3 0.4 0.5 0 01 02 03 04 05 06 07 08
Fig 3. Frequency of the optimality hypothesis (n=20)
AA estimator for stochastic gradient FD estimator for stochastic gradient
100% 100%
90% |\ 90% \ T
go% \ —N=100 80% \ — N=100
70% \ - 70% \ -
60% —— N=200 60% —— N=200
50% N=500 50% N=500
40% | N=1000 40% \ N=1000
30% 30%
20% \\ —N=5000 20% \\ — N-5000
10% 10%
0% 0%
0 01 02 03 04 05 06 07 0 0.1 0.2 0.3 0.4 0.5
SPSA estimator for stochastic gradient LR estimator for stochastic gradient
100% 100%
90% — 90% T ]
80% 80% =
70% — N=100 70% - —— N=100
60% —— N=200 60% —— N=200
50% N=500 50% N=500
40% N=1000 40% N=1000
30% 30%
0% —— N=5000 200 —— N=5000
10% 10%
0% E—— 0%
0 0.1 0.2 0.3 0.4 0.5 0 01 02 03 04 05 06 07 08
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Fig 4. Frequency of the optimality hypothesis (n=50)
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AA estimator for stochastic gradient FD estimator for stochastic gradient
100% — 100% 1T
90% 90%
80% 80% \\
70% —— N=200 70% | —— N=200
60% —— N=500 60% N=500
50% 50%
0% N=1000 20% N=1000
30% N=5000 30% \ —— N-5000
20% 20% \\
10% 10%
0% 0%
0 01 02 03 04 05 06 0 0.1 0.2 0.3 0.4 0.5
SPSA estimator for stochastic gradient LR estimator for stochastic gradient
100% T — 100%
90% I 90% +———=—
80% 80% ~—
70% —N=200 70% = — N=100
60% N=500 60% — N=200
50% 3 50% N=500
40% E‘;ggg 40% N=1000
30% —N= 30% _
20% 20% ——N=5000
10% 10%
0% 0%
0 0.1 0.2 0.3 0.4 0.5 0 01 02 03, 04 05 06 07 08

5.

Fig 5. Frequency of the optimality hypothesis (n=100)

Computer study of the convergence of the stochastic optimization method

In this section we study the convergence of the approach developed by computer

simulation using the testing examples given in Appendix.

Let us consider the results solving a manpower problem (Example 2). Optimal solutions

of solving this task of varying variation 7 are given in Table 5 (manpower costs are given
in USD, an admissible confidence interval of the objective function is 0,1 (100 USD).

Table 5. Manpower amount on the levels and costs (in dependence of the variation77).

cost of
manpower
base level of regular staff (conf. interval
0,1)

n X, X, X, F
0 9222 5533 1106 94, 899
1 9222 5533 1106 94,899
10 9376 5616 1106 96,832
30 | 9452 5672 1036 96,614

It is proved (Sakalauskas, 2000, 2002) that the considered approach ensures a linear rate
of convergence. It follows from the linearity of this rate that the total amount of Monte-

Carlo trials th:le performed to get the optimal solution is approximately proportional

to the amount of trials N' necessary to solve the problem with admissible accuracy.
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ot NT . - . .
Moreover, the ratio E e S determined mostly by a positive definiteness of Hessian of

the objective function and almost does not depend on the admissible accuracy & (see
details in Sakalauskas, 2002). Table 6 illustrates this fact where this ratio is presented for
various & and 77. Thus, a conclusion follows that if we have a certain resource to compute
one value of the objective function with admissible accuracy, then optimization requires
only several times more computations. This enables us to construct reasonable from a
computational viewpoint stochastic methods for stochastic programming with admissible

accuracy.
w
Table 6. Ratio ~“"* N' under admissible interval ¢ and variation 77 .
g 0,05 0,1 0,2
7 -10 16.1 107 | 109
n=30 | 214 213 | 202

Let us study the solution of the examples taken from the Internet database of test
problems (http://www.math.bme.hu/~deak/twostage/). The solution taken from the
database and the one obtained by the developed approach are presented in Appendix. As
one can see, the developed adaptive method enables us neither to find the given solutions
nor to improve them, sometimes rather essentially (for instance, in Example 4).

Now let us consider more detailed results obtained in solving Example 3, 400 times by
the method (15). The initial data were as follows: y=p£=0.95, £=0.99,

£=0.1,0.2,0.5;1.0, N’=N,,,=100, maximal number of iterations t ., =100, generation of

trials was broken when the estimated confidence interval of the objective function exceeded
the admissible value ¢.

10 1400000
/S 1200000 i
80 17 1000000 i
60 / 800000 AJ
20 600000 i f
2 / / 400000 N/ N
200000
Ao
P 0 R
1 6111621263136414651566166717681869196 1 6111621263136414651566166717681869196
Figure 6. Frequency of stopping under Figure 7. Change of the sample size under
admissible interval &. admissible interval €.
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Figure 10. Change of Hotelling statistics

under admissible interval €.
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Figure 11. Histogram of ratio z‘ N
i1 Nt

under admissible interval €.

Table 7. Value of the objective function 7 and the ratio Z‘HE_: under admissible interval &
(Example 3).
Estimated Value of the Ratio,
confidence objective 3 ﬁ%ﬁ
interval, & function, F
0.1 182.6101 20.14
0.2 182.6248 19.73
0.5 182.7186 19.46
1 182.9475 19.43

Termination conditions were satisfied at least one time for all paths of optimization.
Thus, a conclusion on the optimum finding with admissible accuracy could be made for all

paths (sampling frequency of termination after # iterations with confidence intervals is

presented in Fig. 6). Average dependencies of the sample size, objective function,
confidence interval, the Hotelling statistics on the iteration number ¢ are given (Fig’s. 7-10)

to illustrate the convergence and behavior of the optimization process. Also, one path of

realization of the optimization process illustrates a stochastic character of this process in

these figures. In Fig. 11 the histogram of the ratio th=1

Ni

N is depicted.
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Discussion and conclusions

Thus, the stochastic iterative method has been developed to solve stochastic linear
programming (SLP) problems by a finite sequence of Monte-Carlo sampling estimators.
Since in iterative stochastic optimization only the first order methods are working, we have
confined ourselves by gradient-descent type methods showing that a typical deterministic
approach of constrained optimization might be generalized in a stochastic case. The
proposed method was studied by numerical ways using the examples taken from literature
and standard database of two stage programming tests.

The approach presented in this paper is grounded on the stopping procedure and the
rule for adaptive regulation of the size of Monte-Carlo samples, taking into account
statistical modelling accuracy. Several stochastic gradient estimators were compared by
computer simulation studying the workability of the estimators for testing the optimality
hypothesis by statistical criteria. It was demonstrated that a minimal size of the Monte
Carlo sample necessary to approximate the distribution of the Hotelling statistics,
computed using gradient estimators, by the Fisher distribution depends on an
approximation approach and dimensionality of the task 7. The computation results show
that an analytical and difference approach provide estimators for reliable checking of the
optimality hypothesis in a wide range of dimensionality of the stochastic optimization
problem (2<n<100). However, the SPSA and the LR estimators can be applied for
stochastic gradient estimation only for tasks of not very large dimensionalityl<n<20. The
proposed termination procedure allows us to test the optimality hypothesis and to evaluate
reliably confidence intervals of objective and constraint functions in a statistical way.

The regulation of a sample size in case this size is taken inversely proportional to the
square of the norm of the gradient of the Monte-Carlo estimator allows us to solve SLP
problems rationally from a computational viewpoint and guarantees convergence a. s. The
linear rate of the proposed convergence was studied by a numerical way. In our approach
optimization can usually require only several times more computations as compared with
the computation of one function value. The numerical study corroborates theoretical
conclusions on the convergence method and shows that the developed procedures make it
possible to solve stochastic problems with sufficiently agreeable accuracy by the means of an
acceptable amount of computations. All test examples taken from standard database were

solved successfully and some solutions given on this base were improved.
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DVIEJU ETAPY STOCHASTINIS TIESINIS PROGRAMAVIMAS NAUDOJANT
MONTE-KARLO IMCIU [VERCIUS
Kestutis Zilinskas
Santrauka

Straipsnyje pateikiamas iteracinis stochastinio tiesinio programavimo uzdaviniy
sprendimo metodas naudojant baigtiniy Monte Karlo imdiy serijy jvercius. Metodas
pagristas Monte Karlo iméiy ilgio reguliavimo taisykle, kai imties ilgis atvirksciai
proporcingas tikslo funkcijos gradiento Monte Karlo jveréio normos kvadratui, bei
statistinémis algoritmo stabdymo salygomis, kurios atsizvelgia | statistinio modeliavimo
tiksluma. UzZdavinio sprendinio optimalumas bei tikslumas yra vertinami statistiniais
btdais, patikrinant statisting hipotez¢ apie sprendinio optimaluma bei skaiciuojant tikslo
funkcijos pasikliautinajj intervala. Iteracinio procese taikomas e-leistinyjy krypciy metodas.
Skaitiniai eksperimentai patvirtina teorines prielaidas bei parodo, kad pasiilytas metodas
leidzia i$spresti stochastinius uzdavinius reikiamu tikslumu priimtinu skaic¢iavimy kiekiu.

Pagrindiniai ZodZiai: stochastinis programavimas, Monte Karlo metodas, stochastinis
gradientas, statistiniai kriterijai, €-leistinoji kryptis.
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Appendix

For numerical investigation of the developed approach the following test examples were

studied.
Example 1. Let us consider the function (Sakalauskas, 2002)
F(x) = Efg(x+¢)

being an expectation of
f0 (Y) = zin:l (ai Yi2 + bi ) (1_ COS(Ci Vi )))

where Yjare random and normally N(O, d?) distributed, =0.5, a,are uniformly
distributed in [2, 5], b, - in [1, 2] and C; - in [-0.5, 0.5] and 2<Nn<100.
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Example 2. Manpower-planning problem

We consider the manpower-planning problem (Ermolyev and Wets, 1988) where the
employer must decide upon the base level of the regular staff at various skill levels. The
available recourse actions are regular staff overtime or outside temporary help in order to
meet unknown demand for service at a minimal cost. The problem is as follows: choose
X = (Xl, Xy, X3) to minimize

3

12 3
F(x,2) :ch X, +ZE min[Z(qj YT -zj’t)]
t=1 =1

j=1

subject to
X;20,y;,20,2;, 20,
3 3
Z(yj_t + zj’t)z W - Y X, t=12,...,12,
j=1 j=1
Y £02-a.%;, j=12,3, t=12,...,12,
7]—1(Xj Y T Zj—l,t)_ (Xj +Yiat Zj—l,t)z 0,
1=12,3 t=12,...,12,
where
X; base level of the regular staff at the skill level j = 1, 2, 3,
Yit amount of overtime help,
Z;, amount of temporary help,
C, cost of the regular staff at the skill level j = 1, 2, 3,
o} cost of overtime,
r; cost of temporary help,
W, demand for services at the period 7,
a, anticipated absentee rate for the regular staff at the time ¢,
Yia ratio of the amount of the skill level j per amount of j-7 required,

the demands W'are independently normal: N (,u,O'Z), where g, =717-0/. The initial data
and other details can be found in (Ermolyev and Wets, 1988). This problem has 3 variables
at the first stage and 72 linear inequalities with 75 variables at the second stage.
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Example 3.

Two-stage stochastic linear optimisation problem. The dimensions of the task are as
follows: the first stage has 10 rows and 20 variables; the second stage has 20 rows and 30
variables. The data of the problem are taken from the database at the address
http://www.math.bme.hu/-deak/twostage/ 11/20x20.1 (accessed on 2006-01-20).

The estimate of the optimal value of the objective function given in the database is
182.94234 + 0.066 and the optimal point is:

0.000000 0.000000 0.410936 0.107915 0.020078
0.000000 0.000000 0.280964 0.038423 0.085044
0.000000 0.161090 0.000000 0.758401 0.551627
0.266730 0.309641 0.000000 0.125513 0.357334

The application of the considered approach allows us to improve the estimate of the

optimal value up to 182.59248 £ 0.033 and the optimal point is:

0.000000 0.000000 0.438473 0.105014 0.027074
0.000000 0.000000 0.297970 0.029859 0.104539
0.000000 0.170788 0.000000 0.737453 0.580798
0.279175 0.325201 0.000000 0.127925 0.352842
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Example 4.

Two-stage stochastic linear optimisation problem. The dimensions of the task are as
follows: the first stage has 10 rows and 20 variables; the second stage has 20 rows and 30
variables. The data of the problem are taken from the database at the address
http://www.math.bme.hu/-deak/twostage/11/20x20.2.

The estimate value of the objective function given in the database is 266.68373 + 0.187
and the solution point is:

0.000000 2.491040 0.000000 1.140885 0.290554
0.000000 0.033435 0.023088 0.406078 0.000000
0.000000 0.625346 0.000000 0.000000 0.000000
0.084560 0.119499 0.281248 0.192027 0.152020

The application of the considered approach allows us to improve the estimate of the
function value up to 266.22764 + 0.066 and the solution point is:

0.000000 2.596710 0.000000 1.195545 0.281074
0.000000 0.032765 0.020928 0.406148 0.000000
0.000000 0.638956 0.000029 0.000000 0.000000
0.083820 0.118879 0.282258 0.191927 0.150970
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Example 5.

Two-stage stochastic linear optimisation problem. The dimensions of the task are as
follows: the first stage has 30 rows and 60 variables; the second stage has 60 rows and 90
variables. The data of the problem are taken from the database at the address
http://www.math.bme.hu/-deak/twostage/11/60x60.4.

The estimate value of the objective function given in the database is 300.84160 + 0.039
and the solution point is:

0.1969 0.0000 0.0260 0.2892 0.1560 0.0000 0.0000
0.0172 0.0000 0.0793
0.0000 0.0000 0.0000 0.0499 0.2118 0.0881 0.0000
0.0425 0.0967 0.0501
0.6735 0.0000 0.0619 0.0203 0.0000 0.0000 0.1780
0.0000 0.0414 0.3646
0.3090 0.3593 0.0000 0.0000 0.0000 0.0899 0.2509
0.1090 0.0375 0.0000
0.0656 0.0450 0.0501 0.0000 0.0000 0.1950 0.0633
0.0000 0.0000 0.0633
0.6750 0.0026 0.0000 0.0000 0.2335 0.3067 0.0000
0.8165 0.0641 0.0000

Application of the considered approach allows us to improve the estimate of the
function value up to 300.66896 + 0.033 and the solution point is:

0.1940 0.0000 0.0224 0.2781 0.1651 0.0000 0.0000
0.0187 0.0000 0.0804
0.0000 0.0000 0.0000 0.0594 0.2019 0.0837 0.0000
0.0395 0.0984 0.0536
0.6311 0.0000 0.0636 0.0342 0.0000 0.0000 0.1745
0.0000 0.0318 0.3610
0.3057 0.3738 0.0000 0.0000 0.0000 0.0812 0.2623
0.0915 0.0385 0.0000
0.0651 0.0367 0.0592 0.0000 0.0000 0.1919 0.0666
0.0000 0.0000 0.0680
0.6700 0.0051 0.0000 0.0000 0.2367 0.3040 0.0000
0.7703 0.0563 0.0000
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Example 6.

Two-stage stochastic linear optimisation problem. The dimensions of the task are as
follows: the first stage has 40 rows and 80 variables; the second stage has 80 rows and 120
variables. The data of the problem are taken from the database at the address
http://www.math.bme.hu/-deak/twostage/11/80x80.3.

The estimate value of the objective function given in the database is 586.32985 + 0.327
and the solution point is:

0.0000 0.0000 0.2811 0.9275 0.0000 0.0000 0.0000
0.0000 0.1368 0.2596
0.2590 0.0000 0.1567 0.0727 0.0311 0.3451 0.0000
0.0917 0.0262 0.0276
0.3560 0.0000 0.0853 0.0000 0.6380 0.0000 0.6734
0.0000 0.1170 0.0723
0.0000 0.1558 0.1571 0.0000 0.1542 0.0000 0.0653
0.1334 0.0000 0.0000
0.0000 0.0000 0.0548 0.0000 0.1130 0.0000 0.0153
0.0735 0.1191 0.0000
0.0401 0.0251 0.0519 0.0000 0.0319 0.0000 0.0229
0.0000 0.0406 0.1074
0.0101 0.0000 0.0000 0.0000 0.3822 0.0000 0.0624
0.0000 0.0368 0.0186
0.1950 0.1213 0.0000 0.0000 0.0000 0.0144 0.3296
0.0000 0.1363 0.0950

The application of the considered approach allows us to improve the estimate of the
function value up to 475.01266 + 0.99999 and the solution point is:

0.1451 0.0000 0.0000 0.0704 0.1418 0.0000 0.0020
0.2071 0.0000 0.2293
0.0000 0.1992 0.2146 0.0387 0.0175 0.0000 0.0000
0.1091 0.1159 0.1331
0.0000 0.0000 0.0126 0.0529 0.8415 0.0000 0.2138
0.0671 0.1740 0.1710
0.0000 0.2721 0.1630 0.0000 0.0589 0.0000 0.1285
0.1268 0.0000 0.0000
0.2703 0.0000 0.0351 0.0000 0.6207 0.2879 0.1270
0.1280 0.1745 0.0375
0.0567 0.0751 0.1603 0.0000 0.0000 0.0000 0.0244
0.4942 0.0539 0.1429
0.0639 0.0000 0.0000 0.1672 0.0913 0.0000 0.0000
0.0619 0.0000 0.0149
0.1967 0.1349 0.0000 0.0000 0.0000 0.0110 0.2659
0.0000 0.0938 0.0000
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