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Abstract. This paper addresses the issue of finding the most efficient estimator of the normal
population mean when the population “Coefficient of Variation (C. V.)” is ‘Rather-Very-Large’
though unknown, using a small sample (sample-size < 30). The paper proposes an “Efficient Iterative
Estimation Algorithm exploiting sample “C. V.” for an efficient Normal Mean estimation”. The
MSE:s of the estimators per this strategy have very intricate algebraic expression depending on the
unknown values of population parameters, and hence are not amenable to an analytical study
determining the extent of gain in their relative efficiencies with respect to the Usual Unbiased
Estimator X (sample mean ~ Say ‘UUE’). Nevertheless, we examine these relative efficiencies of our

estimators with respect to the Usual Unbiased Estimator, by means of an illustrative simulation
empirical scudy. MATLAB 7.7.0.471 (R2008b) is used in programming this illustrative ‘Simulated
Empirical Numerical Study’.
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1. Introduction.

This paper addresses the issue of finding an optimal estimator of the normal population
mean when the population ‘Coefficient of Variation (C.V.)’, say “a” is unknown and is
expected to be ‘Rather-Very-Large” (Say, because population standard deviation o = 5), as
per the pilot surveys of the population at hand. The cases of such a high population “standard
deviation 67 are not very uncommon, for example the study-variable is the weights of fishes
in an ocean. Beside this, as is well-known, the ‘C.V.” is invariant under the change of scale of
the study variable, say X; but is not so in case of the variable’s translation. Therefore, for
example, if we have a good estimate of the population mean and translate the study variable
by adding say, ‘0.1 after subtracting this estimate, and hence, consequently (to a great extent,
without loss of any generality), we could presume that the ‘MEAN’ of our parent population
under study say, “0” is say, “0.1”. The new ‘population “C.V.” of this translated parent
population will be more-or-less about ‘ten-fold’ of that of the original translated population,
if the mean was 1. Further, in this paper we have considered the case of small sample-size <
30.

Devore, Jay L. (1982) detailed the optimal estimation procedures in statistical estimation.
Searls (1964), Khan (1968), Gleser and Healy (1976), Arnholt and Hebert (1995), and
Ashok Sahai (2011) considered the problem of estimating the normal population mean and

« »

variance, when its Coefficient of Variation (C. V.) “a” is known.
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It is very well- known that the Searles (1964)’s Minimum Mean Squared Error (MMSE)

Estimator for the Normal Population N (8, 6%)’s mean ‘0’ gets to be: Say, SE = X/ (1+a%*/n);
Wherein, ‘a’ is the Known Population Coefficient of Variation (6/8) & ‘n’ is the size of the

i=n

random sample from the Normal Population with the sample mean “ X = (Zi:l X)in”.
The Searles (1964)’s estimator is known to be “MMSE”, and hence optimal. But this

estimator could be used only when for such a Normal population, NV (8, 26), ‘@’ is known.
The Usual Unbiased Estimator (UUE) of population mean “07 is well known to be the

sample mean & variance: X = (Z:j X,)/n”.=UUEof 0 & §* = Z:(Xi — )_()2 /(n-1)
=)
= UUE of 2&.

In this case of known ‘CV’, the sufficient statistic ( X ; &) is not complete. Consequently,
when estimating mean/variance, or essentially any function of unknown parameter 6, we are
groping in the dark when attempting to find its Universally Minimum Mean Squared Error
Estimate (UMMSE), or to find the Universally Minimum Variance Unbiased Estimate
(UMVUE).

However, in practice, more often than not, the population ‘C.V.” “a” is rather unknown.
Winston A. Richards, Robin Antoine, Ashok Sahai, and M. Raghunadh Acharya (2010),
Richards, Winston A., Ashok Sahai, Robin Antoine, Kimberly Wright, and Raghunadh M.
Acharya (2009) & Miodrag M Lovric & Ashok Sahai (2011) considered using the sample
coefficient of variation for efficient estimation of Normal population parameter 8, and hence
of the mean and variance.

As noted earlier, it is very well-known that the Searles (1964) Estimator for ‘0" gets to be:

Say, SE =(Y)/ (1+V?); (1.1)
Wherein V’ is square of the coefficient of variation of ‘ (Y)’ (1.2)
As such, [C. V. (Y)]Z - 0% (\n. 0)’=V = a/n. (1.3)

In this paper we have, however, been motivated by this result of Searls (1964) [9] leading
to the estimator “SE”, as in (1.1) for the estimation of the normal population mean when
"C.V.” is unknown.

As noted earlier, the fact that “V’ might not be known is a reality much more often in
practice than when it is known.

In fact the assumption that V’ is quite closely known is also seldom justified. In the

absence of the knowledge of ‘a’, we propose to use its sample counterpart:

Say,v=a = $/[nX%; & = (X, - X)? [(n—1)= UUEV (1.4)
i1
In the above, we use the Usual Unbiased Estimate of the population Variance 6* (UUEV),
namely the sample variance S°.

2. The Proposed Estimators.
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Before we propose our “Iterative Algorithm for Efficient Estimation of the Mean of a
Normal Population” using ‘Computational-Statistical Intelligence’ & sample counterpart v’
of the unknown C.V. “a”, we would recall that the Usual Unbiased Estimator of the normal
population mean “0” of N (0, 26F) is [which is consistent, unbiased efficient & sufficient

estimator for “0”]:

“X=1"X)/n”=UUE. (2.1)

i=1

Now, we propose estimator say, Mean-Estimator Sahai-Acharya (MEANESA (0)), the
beginner [Sample Counterpart of the Searles (1964)’s estimator} of the “Iterative Algorithm”:

MEANESA (0) = X / (1+v); wherein v = $%/ {n. (X )%} (2.2)

Inasmuch as the simulation study brings forth the fact that “MEANESA (0) = X/ (1+v)”
is significantly more efficient than UUE X’ [for small sample-sizes]; we are encouraged to

try the following series of estimators obtained by using X / (1+v) in place of X , successively.

MEANESA [1] = X / (1+v)? (2.3)
MEANESA [2] = X / (1+v)? (2.4)
MEANESA [3] = X / (1+v)* (2.5)
MEANESA [4] = X / (1+v)° (2.6)
MEANESA [5] = X / (1+v)® (2.7)
MEANESA [6] = X / (1+v) (2.8)
MEANESA [7] = X / (1+v)® (2.9)
MEANESA [8] = X / (1+v)° (2.10)
MEANESA [9] = X / (14v)" (2.11)

And our “Iterative Efficient Mean-Estimator of Sahai-Acharya at Iteration # I”: Say,
MEANESA (I) [I = 1 (1) m (Positive Integer)]. These are generated with the recurrence

relation: ~
MEANESA (I) = (1 + k)* MEANESA [I-1] — k* UUEV; (2.12)

Wherein “k” is ‘Design-Parameter’ of the proposed “Iterative Efficient Mean-Estimator
Procedure of Sahai-Acharya”.

To determine the “Optimal Value” of “k”, the ‘Design-Parameter’ of the proposed
“Iterative Efficient Mean-Estimator Procedure of Sahai-Acharya” an extensive simulation-
study was carried out. Using the “Computational Intelligence” gained thorough the aforesaid
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extensive simulation-study, it was discovered that the best choice/optimal choice for “k”, the
‘Design-Parameter’, happens to be “0.1”. Subsequently, to determine the “Optimal Value”
for “I” [The Number of Iteration to STOP at]; again we use “Computational
Statistics/Simulation Study”, as is illustrated in the following section of “Simulation Study”.

We start by noting that the aforesaid estimator “M EANESA (I)” involves very intricate
algebraic expression depending on the unknown values of ‘0” & ‘a’l

Also, the proposed estimators “MEANESA (I)” have no close-form expression for their
MSE [Mean Squared-Error], and thus are not amenable to any analytical study determining

their relative efficiency as compared to the UUE/ Usual Unbiased sample mean Estimator “

»

X7 of the population mean “0”.

Therefore, the only open recourse is to study this problem numerically with a large
number of simulated samples of various illustrative sizes (Say ‘n’) from the parent normal
population with illustrative values of the population mean and standard deviation. This type
of “Simulated Numerical Empirical Study” has been attempted later in the subsequent
section considering a large number “55,5550f Replications, via simulated samples.

Now, to discover improvement brought forth by these iteratively generated estimators
proposed in our paper, we have taken to an empirical simulation study in the following

section.

We define the Relative Efficiency, REFF (¢) of the estimator “®” at hand, relative to X =
UUE in equation (2.1) as follows.

Reff(+) = [100.MSE (%) / V (X )] %; wherein MSE (+) =E [+ - 8 ]. (2.13)

In above, MSE (¢) = V' (*) + B (*) stands for the MSE {Mean Square Error} of the estimator
at hand, V' (®) for its variance, and B () for its bias.

In this context, we mention that we have considered the estimators for their ‘Relative
Efficiencies’ as per the “Iteration #”, # = 0 (1) 9, for the illustration.

3. The Simulation/Empirical Numerical Study

In the preceding section, it is apparent, from the fact that in the absence of any ‘closed form
analytical expressions’ of the Reff (*)’s facilitating any feasible comparisons, that the answer to the
question as to what is the extent of the relative gain/ achievement in pursuing the ‘Iteratively More
Efficient Estimation” of the normal population “MEAN?, lies in trying to know it through an
illustrative “Simulation/Empirical Numerical Study’, as is attempted in this section. These Reff (*)’s
have been calculated for EIGHT illustrative values of the 0 = 5.0, 5.5, 6.0, 6.5, 7.0, 8.0, 9.0 ¢10.0.
The “Population Mean” is envisaged in our paper to be very small: 8 ~0.10. As also, we have carried
out the illustrative numerical study for SZX example-values of the sample size, namely 7 =5, 10, 15,
20, 25, and 30. The values of the actual MSE’s are calculated by considering the random samples
of size ‘n’ using 55,555 Replications (pseudo-random normal samples of size ‘n’) for various

estimators “MEANESA (I)” with I = 0 (1) 9, as also for the Usual Unbiased Estimator (UUE),

namely the sample mean “X . Hence the values of Reff (*)’s are calculated as per (2.13). These
Reff (*)’s are reported, to the closest first decimal place of their respective actual values, in the SIX
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tables in the APPENDIX; corresponding to each of the SZX illustrative values of the sample-size ‘n’.
MATILAB 7.7.0 (R2008b) is used in programming the calculations in this illustrative Simulated
Empirical Numerical Study’.

4. Conclusions.

As expected, the “Relative Efficiencies” of the proposed “Iteratively More Efficient”
estimators of the ‘Normal Population Mean’ are progressively better with the increase of the
“Iteration Number (#) I” in the impugned estimator MEANESA (I), till a certain stage
depending on the values of the sample size n and the population parameter 6. In practice,
we could use the values of our sample mean and that of the sample variance, namely that of

“X and §?”, in place of “B & 6*”, and using these values and the relevant sample size value
‘n’, we could conduct the “Simulation Study” outlined in the preceding section. This
“Simulation Study” could be used to determine the “Optimal Number of the Iterations I”,

where we must stop to have the “Most Efficient Estimator” of the population mean X , using
this “Computational Intelligence” available per the ‘Simulation Study”. Incidentally, we note
that the smaller the “n”, the greater the “Optimal Number of the Iterations I”.

Though we have limited the illustration up to I = 9, clearly the indications are well-
supportive of the fact that we could do better by proceeding further to generate progressively
more efficient estimators, till we reach the “Optimal Number of the Iterations I” where we
must stop to have the ‘Most Efficient Estimator’ of the population variance 6% as to be
determined by using this “Simulation Study”!

This achievement, as is illustrated through the results in the Tables in the APPENDIX,
has been the motivating aim behind this paper.

It is very note-worthy to observe the results tabulated in Tables A.1 to Table A.3 Vis-a-
Vis those tabulated in Tables A.4 to Table A.6. As the sample-size gets to be significant
(>=20) the asymptotic property of the estimator phases out the gainful effect of “Iteration”
unless the standard deviation ‘G’ happens to be rather very large!

It might be remarked in this context, that the extent-and-the-stage till which the proposed

“Algorithm” of generating iteratively more efficient estimator depends on the value of the
coefficient-of-variation “V” [i.e., the C. V. (X )] as would be available through the value of

its sample counterpart “v”. Precisely, this value of “v” might be used with the value of “ X
[as an estimate of B8] together with that of §? [as an estimate of 6°]. To seek the guidance
about the “Optimal Value of T for a particular sample-size ‘n’ we have to have this

“Simulation Study” using “ X & S?” in place of “@ & 6" for generating the pseudo-random
samples of size ‘n” from N (6, o) with a ‘Replication of 55,555’.. .etc.

Thus, “Efficient Iterative Estimation Algorithm, exploiting sample coefficient of
variation, for the Efficient Normal Variance Estimation” is essentially in the arena of
‘Computational Statistics’, an upcoming area of “Statistics” exploiting the ‘Electronic
Computers’ like in other areas, e.g. ‘Mathematics’, ‘Physics’, ‘Chemistry’; inseminating
‘Computational Mathematics’, ‘Computational Physics’, ‘Computational Chemistry’, etc.
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ITERATYVUS NORMALINIO POPULIACIJOS VIDURKIO JVERTINIMAS
TAIKANT SKAICIUOJAMOSIOS STATISTIKOS METODUS

Ashok Sahai, Raghunadh M. Acharya

Santrauka

Straipsnyje analizuojama efektyvaus normalinio populiacijos vidurkio jvertinio radimo problema,
kai populiacijos variacijos koeficientas yra “labai didelis” arba nezinomas. Tyrimui naudojama maza
imtis (imties elementy skai¢ius < 30). Straipsnyje pasitlytas iteracinis jvertinio radimo algoritmas,
kuris naudoja imties variacijos koeficientg efektyviam normalinio vidurkio jvertinimui.

Sioje strategijoje jvertiniy maZiausia kvadratiné paklaida (MSE) turi sudétinga algebrine israiska,
priklausomg nuo nezinomy populiacijos parametry verciy ir todél buty sudétinga ja jvertinti
analitiniu badu nustatant ju santykinio efektyvumo jprastinio jvertinio, neturinéio poslinkio, X
atzvilgiu, naudos mastg. Straipsnyje pristatytas santykiniy jvertiniy efektyvumo jprastiniy neturinciy
poslinkio jvertiniy atzvilgiu tyrimas, panaudojant iliustracing empiriniy duomeny simuliacija.

Tyrimui atlikti buvo pasitelkta MATLAB 7.7.0.471 (R2008b) programiné jranga.

Pagrindiniai ZodZiai: MMSE, imties variacijos koeficientas, statistika, modeliavimas.

505



Tablea.l. [n =5].

*relative efficiencies of normal mean estimator (*) [in %]:

Computational Science and Techniques, Vol 4, No 1, 2016, 500-508

APPENDIX.

estrs [\ — 5.0 5.5 6.0 6.5 7.0 8.0 9.0 10.0
meanesa(0) 660.2 679.8 677.4 673.3 664.6 682.8 2551.8 676.8
meanesa (1) 2231.3 2403.0 2405.6 2423.5 2365.6 2572.4 6526.0 2557.8
meanesa (2) 4674.8 5273.4 5414.6 5699.7 5586.8 6511.7 12528.2 6754.9
meanesa (3) 6952.4 8107.7 8671.7 9634.4 9689.9 12003.2 18859.8 13607.3
meanesa (4) 8380.9 9943.3 11040.5 12746.7 13297.1 17082.7 23772.5 21534.2
meanesa (5) 9102.9 10882.3 12400.0 14588.0 15725.4 20505.2 26870.9 28198.4
meanesa (6) 9436.9 11319.4 13105.8 15522.6 17135.7 22426.6 28618.5 32624.6
meanesa (7) 9586.7 11517.7 13463.0 15965.8 17904.8 23423.2 29556.5 35180.1
meanesa (8) 9652.6 11607.3 13644.8 16169.3 18316.6 23928.2 30051.0 36554.5
meanesa (9) 9680.7 11647.6 13738.3 16259.8 18537.4 24183.8 30721.0 37269.0

*relative to the usual unbiased estimator of normal mean ~ uue.

Tablea.2. [n = 10].

*relative efliciencies of normal mean estimator (#) [in %]: reffs (¢) for various 0’s with 0 = 0.1
estrs[\o0 — 5.0 5.5 6.0 6.5 7.0 8.0 9.0 10.0
meanesa(0) 1135.8 1184.5 1249.2 1295.2 1324.8 1392.3 1419.1 1499.3
meanesa (1) 2296.2 2663.3 3089.2 3454.9 3814.5 4622.8 5304.1 6239.1
meanesa (2) 2479.5 2967.9 3534.3 4065.9 4656.9 6007.5 7435.6 9111.7
meanesa (3) 2481.9 2988.3 3573.4 4136.7 4784.8 6252.3 7888.0 9697.4
meanesa (4) 2471.9 2979.7 3564.9 4132.8 4793.4 6279.1 7950.6 9763.5
meanesa (5) 2465.5 2972.7 3556.6 4124.3 4787.6 6274.8 7948.0 9753.6
meanesa (6) 2462.1 2968.7 3551.7 4118.7 4782.5 6269.0 7939.0 9740.0
meanesa (7) 2460.4 2966.6 3549.2 4115.5 4779.3 6265.0 7932.3 9731.2
meanesa (8) 2459.5 2965.4 3548.0 4113.7 4777.5 6262.6 7928.2 9726.2
meanesa (9) 2459.0 2964.8 3547.3 4112.8 4776.5 6261.2 7925.8 9723.5

*relative to the usual unbiased estimator of normal mean ~ uue.
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Tablea.3. [n = 15].

Intelligence

*relative efficiencies of normal mean estimator (*) [in %]:

estrs [\ — 5.0 5.5 6.0 6.5 7.0 8.0 9.0 10.0
meanesa(0) 976.3 1093.3 1207.0 1332.9 1448.9 1640.5 1792.1 1950.4
meanesa (1) 1130.8 1358.5 1593.9 1868.8 2165.0 2753.1 3419.2 4159.4
meanesa (2) 1104.8 1338.2 1580.4 1858.2 2163.9 2793.1 3530.4 4345.9
meanesa (3) 1093.2 1325.5 1567.4 1841.8 2145.4 2776.3 3515.4 4327.2
meanesa (4) 1089.0 1320.7 1562.2 1835.1 2137.5 2768.0 3505.4 4312.7
meanesa (5) 1087.6 1318.9 1560.2 1832.6 2134.5 2764.7 3501.2 4306.4
meanesa (6) 1087.0 1318.2 1559.4 1831.6 2133.3 2763.5 3499.4 4303.8
meanesa (7) 1086.8 1317.9 1559.1 1831.3 2132.9 2763.0 3498.7 4302.8
meanesa (8) 1086.7 1317.8 1558.9 1831.1 2132.7 2762.7 3498.3 4302.3
meanesa (9) 1086.7 1317.8 1558.9 1831.0 2132.6 2762.6 3498.2 4302.2

*relative to the usual unbiased estimator of normal mean ~ uue.

Table a4. [n = 20].

*relative efficiencies of normal mean estimator (*) [in %]:
estrs[\0 — 5.0 5.5 6.0 6.5 7.0 8.0 9.0 10.0
meanesa(0) 666.7 788.1 894.9 1026.7 1147.7 1385.2 1623.3 1826.7
meanesa (1) 639.9 774.4 907.7 1079.0 1236.8 1609.2 2048.7 2470.7
meanesa (2) 622.3 753.5 885.7 1054.2 1208.6 1579.3 2018.4 2449.5
meanesa (3) 617.5 747.8 879.5 1046.8 1200.0 1568.7 2004.8 2435.3
meanesa (4) 616.2 746.2 877.7 1044.8 1197.6 1565.6 2000.7 2430.9
meanesa (5) 615.7 745.7 877.2 1044.2 1196.9 1564.7 1999.5 2429.5
meanesa (6) 615.6 745.6 877.0 1044.0 1196.7 1564.4 1999.1 2429.1
meanesa (7) 615.5 745.5 877.0 1044.0 1196.7 1564.3 1998.9 2429.0
meanesa (8) 615.5 745.5 876.9 1043.9 1196.6 1564.3 1998.9 2428.9
meanesa (9) 615.5 745.5 876.9 1043.9 1196.6 1564.2 1998.9 2428.9

*relative to the usual unbiased estimator of normal mean ~ uue.
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estrs [\ — 5.0 5.5 6.0 6.5 7.0 8.0 9.0 10.0
meanesa(0) 448.7 531.1 631.6 730.4 826.8 1028.3 1257.3 1493.1
meanesa (1) 402.9 481.6 584.0 689.5 790.1 1022.2 1302.8 1611.1
meanesa (2) 393.3 470.3 570.8 674.1 772.7 1001.7 1277.4 1582.5
meanesa (3) 391.2 468.0 567.9 670.6 768.8 997.0 1271.2 1575.3
meanesa (4) 390.7 467 .4 567.3 669.8 767.9 995.8 1269.6 1573.6
meanesa (5) 390.6 467.3 567.1 669.6 767.6 995.6 1269.2 1573.1
meanesa (6) 390.6 467.2 567.1 669.5 767.6 995.5 1269.1 1573.0
meanesa (7) 390.6 467.2 567.0 669.5 767.5 995.5 1269.1 1573.0
meanesa (8) 390.5 467.2 567.0 669.5 767.5 995.5 1269.1 1573.0
meanesa (9) 390.5 467.2 567.0 669.5 767.5 995.4 1269.1 1573.0

*relative to the usual unbiased estimator of normal mean ~ uue.

Table a.6. [n = 30].

*relative efficiencies of normal mean estimator (*) [in %]:
estrs[\0 — 5.0 5.5 6.0 6.5 7.0 8.0 9.0 10.0
meanesa(0) 318.2 379.4 452.9 517.2 600.2 758.6 939.9 1130.6
meanesa (1) 279.7 335.5 406.1 468.3 547.3 705.2 897.9 1107.2
meanesa (2) 274.0 328.8 398.2 459.6 537.0 692.6 882.3 1088.6
meanesa (3) 273.0 327.5 396.8 457.9 535.2 690.3 879.3 1084.9
meanesa (4) 272.7 327.3 396.4 457.6 534.8 689.9 878.7 1084.1
meanesa (5) 272.7 327.2 396.4 457.5 534.7 689.8 878.5 1083.9
meanesa (6) 272.7 327.2 396.3 457.4 534.6 689.7 878.5 1083.9
meanesa (7) 272.7 327.2 396.3 457.4 534.6 689.7 878.5 1083.8
meanesa (8) 272.7 327.2 396.3 457.4 534.6 689.7 878.5 1083.8
meanesa (9) 272.7 327.2 396.3 457.4 534.6 689.7 878.5 1083.8

*relative to the usual unbiased estimator of normal mean ~ uue.
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