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Abstract. The paper presents the results on the dimensionality reduction technique which is based
on radial basis function (RBF) theory. The technique uses RBF for mapping multidimensional data
points into a low-dimensional space by interpolating the previously calculated position of so-called
control points. This paper analyses various ways of selection of control points (regularized orthogonal
least squares method, random and stratified selections). The experiments have been carried out with 8
real and artificial data sets. Positions of the control points in a low-dimensional space are found by
principal component analysis. Combinations of RBF technique with random and stratified selections
outperformed RBF with regularized orthogonal least squares algorithm regarding to computation time
analysing all data sets. We demonstrate that random and stratified selections of control points are
efficient and acceptable in terms of balance between projection error (stress) and time-consumption.
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Introduction

With fast evolution of technology and science the amount of the data has been growing
up in the last years. Various domains as science, engineering, telecommunications, finances
are facing with the big data. Regardless of the data volume, the data is high-dimensional, i.c.,
each data point is characterized by many features (variables). One of the problems with high-
dimensional data is that, in many cases, not all the measured features are important for
understanding the underlying phenomena of interest (Fodor, 2002). Dimensionality
reduction approaches extract low dimensional data from the high-dimensional input data.
Dimensionality reduction (projection) techniques map data points from m-dimensional
space to a smaller d-dimensional space (d < m). Among classical dimensionality reduction
methods we may mention principal component analysis (PCA) and multidimensional scaling
(MDS) as ones of the best known methods. The main idea of PCA is to reduce the
dimensionality of data by performing a linear transformation and rejecting a part of the
components, variances of which are the smallest ones (Sorzano, et al., 2014). The goal of
MDS is to find low-dimensional points, such that the distances between the points in the
low-dimensional space were as close to the data proximities as possible (Borg & Groenen,
2005). Dealing with large data sets, MDS suffers from drawback of computer memory
resources. The problem of projection process arises, because huge distance matrixes are used
and they require large memory resources and computation time. One of the solutions is to
use parallel and distributed computing or cloud computing. Another solution is, at first, to
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project a subset of data samples, called control points, latter, to project remaining points
taking into account positions of control points. The control points are a subset of data
samples which are projected in a low-dimensional space, the information got from the control
points is used to project the rest part of data samples. Recently the dimensionality reduction
methods based on manipulation of control points have been proposed: a part-linear
multidimensional projection (PLMP) (Paulovich, et al., 2010), a local affine
multidimensional projection (LAMP) (Joia, et al., 2011), a projection with a radial basis
function (RBF) (Amorim, et al., 2014). When the number of data points is very large the
relative MDS (Naud & Duch, 2000) and landmark MDS (de Silva & Tenenbaum, 2004)
methods might be used. The mentioned methods are attractive as they avoid calculations
with huge distance matrixes (if they are used in the algorithm) and needs less computer
memory and computation time. However, the projection quality depends on the number of
control points and the manner of selection of control points, thus, the selection should be
done properly. The set of control points has a direct impact in the quality of the final
projection results (Amorim, et al., 2014). The goal of the paper is to estimate various ways
of selection of control points including the usage of radial basis function technique in order
to determine which way is more effective.

The paper is organized as follows. Section 1 presents the related works. Section 2 reviews
dimensionality reduction techniques based on radial basis function. Section 3 introduces the
ways of selection of control points. Section 4 shows some experimental results. Finally,
conclusions are drawn.

1. Related works

The section reviews some dimensionality reduction methods based on selection of control
points. Paulovich et al. have proposed a multidimensional projection technique called part-
linear multidimensional projection (PLMP) (Paulovich, et al., 2010). PLMP is a linear
mapping, which uses a subset of data samples to define a global linear map. This method
enables the embedding of high-dimensional data points in a visual space while avoiding
extensive computation of distances between data instances. It requires only distance
information between pairs of representative samples.

A local affine multidimensional projection (LAMP) method also uses a subset of data
samples and their location in the visual space (Joia, et al., 2011). LAMP relies on a
mathematical formulation derived from orthogonal mapping theory, what ensures robustness
and accuracy to the process. Dimensionality reduction by PLMP and LAMP using data sets
of various volumes has been presented in (Paulauskiené & Kurasova, 2014).

A piecewise Laplacian-based projection (PLP) method uses a force-based scheme to place
the subset of data samples in the visual space. The remaining data instances are projected
using several local Laplacian-like operators, which are built from disjoint local
neighbourhood graphs (Paulovich, et al., 2011).

A landmark MDS method runs the classical MDS to embed a chosen subset of the data
in a low dimensional space. Each remaining data point is located within this space given
knowledge of its distances to the subset points (de Silva & Tenenbaum, 2004).
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A relative MDS method is proposed in (Naud & Duch, 2000). This method also uses a
subset of initial data set and then maps this subset using the MDS algorithm. The remaining
points of initial data are added to the mapped points using the relative mapping. The papers
(Bernataviciené, et al., 20006), (Bernataviciené, et al., 2007) focus on a strategies of selecting
a subset in relative MDS, too.

The quality of projections by the before mentioned methods depends on the number of
control points and the way of selection of control points, thus, the selection should be done
properly. Usually a random selection of the control points is used. Recently the selection
based on forward-selection and orthogonal least squares techniques have been proposed
(Amorim, et al., 2014). This selection is grounded on a deterministic algorithm that selects
those data instances that better explain the entire data set. A szatified selection of control
points might be considered as an alternative to a random selection and the selection based on
orthogonal least squares.

2. Dimensionality reduction with radial basis function

A novel multidimensional projection technique based on radial basis function theory has
been introduced by Amorim et al. (Amorim, et al., 2014). Consider a data set X € R™ with
n points. Let Xg = {xy, ..., X} € X, k < n, be a set of control points, for which the set of
corresponding low-dimensional points Ys = {yy, ..., ¥} € R*, d < m is calculated in
advance using any dimensionality reduction method (d = 2). RBF projection finds the
function s: R™ — R% of the form:

s(x) = Xoyexs i (llx — x;D), (1)

in such a way that the function s interpolates the position of each control point, i.e., s(x;) =
vi,i =1,.., k. The function ¢p: Ry = R is called RBF kernel. There are numerous functions
that can be used as a kernel, more information about them can be found in (Amorim, et al.,
2014).

The real-value coefficients 4; have to be calculated to satisfy the interpolation condition.
Thus, a linear system with k equations s(x;) = y;,i = 1,.., k has to be solved. The system
can be written in matrix form as

PA =y, ()

where @ is an interpolation matrix with dimensions k X k, with ®;; = (||xi - xj”); y and
A are 2-columned vectors, each column is accounted for one of the final dimension of the

output. Let ¢;; = (”xi - xj”), A= (H2A8),y; = (¥}, ¥#), then Equation (2) can be

written as

b1 P [M Y1

RN
br1 - brd LAy Yk
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When the coefficients 4 are calculated, the function s is fully determined and it can be
used to approximate the remaining instances of the data set.

3. Selection of control points
3.1. Selection of control points using method based on orthogonal least squares

Amorim et al. have proposed to use orthogonal least squares (OLS) method for selection
of control points (Amorim, et al., 2014). Originally OLS method is used for selection of
centres in RBF (Chen, et al., 1991). It is important to note RBF is a linear regression model.
Assume we have N control points candidates {x;,y;},, where y; is the output
corresponding to control point X;. So, the first step is randomly select /V candidates for
control points and to calculate their low-dimensional projections. If all x; are used as control
points, Equation (1) can be rewritten as:

S(xt) = évzlll'd)(”xt - xi”)) 1 S t S N: (4)
Let ¢; (t) = ¢ (llx; — x;ll, the desired output y; can be expressed as

ye =21 4idi(O) +e, 1<t SN, (5)

where e(t) = y, — s(x;) is an error between the desired output y, and the approximated
output S(x,). e(t) will be zero when all candidates are used as control points, but the goal
of the method is to reduce the set of control points. Equation (5) can be written in the matrix
form as

y=®1 +e, (©)

where y = [y1 .. yn]", @ = [¢1 .. §n], di=[¢i(1) . di(N)]", 4 = [A; ..Ay] and e =
[e; ...en].

Equation (6) has the form of a linear regression model and the vectors ¢; should be
referred to as regressors (Amorim, et al., 2014).

The selection of control points starts with an empty set of regressors (control points) and
one regressor from the set of candidates is selected at a time. Each selection is made in such
a way to maximally decrease the squared error e” e. Applying the concept of the OLS method,
which transforms the set of ¢; into a set of orthogonal basis vectors, it is possible to calculate
regressors individual contributions.

The regression matrix ® can be decomposed as (Amorim, et al., 2014)

O = WA, (7)
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where Ais an upper-triangular matrix with diagonal 1and W = [w; ..wy] with
orthogonal columns that satisfy condition, that WL-T w; =0, ifi # j. The model (6) can be
rewritten as

y=Wg+e, (8)
with AA = g.

To prevent overfitting regularization technique is applied. The error to be minimized can
be expressed as:

ele+ pgTyg, )

where B = 0 is a regularization parameter. This error formulation renames the technique to
Regularized Orthogonal Least Squares (ROLS). Equation (9) can be rewritten as

eTe+Bg"g=y"y - XL (W w; + B)g?. (10)

Dividing (10) by yTy yields

eTetpg’y L wiwi+p)g?
P9 9 _q 2= Wi FiTH)Ii 11
yTy yTy (11)

and the regularized error reduction ration due to w; is defined as

YN wlwi+B)g?

error; = Ty

(12)

At each step of the selection, the control point x; associated with vector w; and maximum
value of error is included in the set of control points.

The stress, given by Equation (13) (Borg & Groenen, 2005), of the remaining point

candidates is also calculated.

Zij(d(xi'xj)‘d(yl"yf))z
T CIETED) )2

stress = , (13)

where d(xi,xj) and d (yi,yj) are distances between instances (points) in the initial (m-
dimensional) and the reduced dimensionality (d-dimensional) spaces. Using all candidates
as control points the error (12) is reduced at most, but not necessarily the szress (13). The goal
is to select a limited amount of points that better explains the data set and potentially reduces
the stress. The detailed ROLS algorithm for selection of control points can be found in
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(Amorim, et al., 2014). The authors of ROLS algorithm have proposed to stop selecting
control points when the maximum number of control points is reached and then the iteration

with minimum stress is found.
3.2. Proposed strategies of selection of control points

We have observed that for each vector y (d = 2) two different sets of control points are
obtained and this special case is not discussed in (Amorim, etal., 2014), therefore we propose
to join those control point sets in one set by selecting either the unique data points or
matching data points. Here unigue means that all the different points without repetitions are
selected from two sets of control points, while matching means that we select only the control
points which can be found in both data sets. Thus, we have a set of control points which will
be used in RBF technique.

In this research, we also investigate random and stratified selection of control points.
Stratified selection means that the same proportion of points as is in a full data set was taken
from each class. The advantage of random and stratified selection ways is that these algorithms
are simple, therefore the calculation time is short.

In this paper, the RBF technique with various strategies of selection of control points

have been analysed:

1. RBF technique with the ROLS algorithm for unigue control points selection (RBF,
ROLS, unique). The ROLS algorithm stops, when it selects the maximum number of
control points.

2. RBF technique with ROLS algorithm for matching control points selection (RBF,
ROLS, matching). The ROLS algorithm stops, when it selects the maximum number
of control points.

3. RBF technique with ROLS algorithm for selection of control points (RBF, ROLS, min
stress). The ROLS algorithm stops, when the maximum number of control points is
reached and when the iteration with minimum szress is found. This iteration indicates
the number of control points which will be used in further calculations.

4. RBF technique with random selection of control points (RBF, random).

5. RBF technique with stratified selection of control points (RBE, stratified).

4. Experimental results
8 data sets are used in the experimental investigations. The Yeast, Image segmentation,

Waveform, Page blocks, MAGIC gamma telescope, Letter recognition data sets are taken from
"UCI Repository of Machine Learning Databases” (http://archive.ics.uci.edu/ml/), Helix and

Swiss rolls data sets are generated by us. The data sets vary in size (number of instances), data
dimensionality (number of features) and number of classes. The short descriptions of the
data sets are presented in Table 1.

A personal computer (Intel i5-3317U CPU 1,7 GHz (Max Turbo 2.6 GHz), with 2 cores
and 12 GB of RAM memory) is used in experimental investigation. The ROLS algorithm
for selection of control points and RBF technique for dimensionality reduction are
implemented in MATLAB R2012b.
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Table 1. Data sets
Name Number of instances (1) | Number of features (m) | Number of classes (I)
Yeast 1453 8 10
Image segmentation 2 086 19 7
Waveform 5 000 21 3
Helix 5000 3
Page blocks 5406 10 5
Letter recognition 18 668 16 26
MAGIC gamma 18 905 10 2
telescope
Swiss roll 30 000 3 2

When using a computer with other characteristics, absolute values of the results would
change, but the same ratio value between different ways would remain.

In this work, we apply the widely used multiquadratics RBF kernel: ¢ () = /c?+(er)?, ¢ =
€ = 1. Two number of candidates and sizes of control point sets have been investigated. For the first
selection of control points the following parameters are used: number of candidates N = 200,
maximum number of control points is equal to 30. For the second one: number of candidates is N =
300, maximum number of control points is 100.

Positions of control points in a low dimensional space (d = 2) are found using the PCA
method. In order to estimate that RBF technique with various ways of selection of control
points gives appropriate results we compare RBF with the linear projection method — PCA.
RBF could be compared with the non-linear method — multidimensional scaling (MDS), but
this method suffers from drawback of computer memory then large data sets are analysed.

The quality of techniques has been evaluated according to a popular quality metric called
stress function given by Equation (13) and the execution time in seconds. For each data set
100 experiments with different number of candidates of control points or random (or
stratified) set of control points are executed.

Table 2 shows the stress values, obtained by various techniques, the best values are
presented in bold. In addition the min/max and variance (Var) values are given. The smallest
stress values are obtained using RBF technique with ROLS algorithm for five (from eight)
data sets (Yeast, Letter recognition, Waveform, Magic gamma telescope, Swiss roll). The results
show that it is unimportant how the join of two control point sets was made (matching or
unique). Although the RBF technique with ROLS algorithm gives better stress values, the
difference of stress values between combination of RBF with ROLS algorithm and RBF with
stratified (or random) selection is not significant. The variance values indicate good results
i.e., that the spread of the values from the mean is small for all techniques. The experimental
results show that RBF technique combined with ROLS algorithm and stratified selection of
control points gives stress values which differ insufficiently from szress obtained by PCA.
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Table 2. Projection error (szress) values for eight data sets.

RBF, RBF, RBF, RBF, RBF, PCA
Name ROLS, ROLS, ROLS, strata random
matching unique min stress | (~30 cp) (-30 cp)
(~30 cp) (~30 cp) (-30 cp)

Stress 0.221 0.224 0.228 0.225 0.244 0.153
Voast Min 0.156 0.156 0.164 0.183 0.180

Max 0.383 0.395 0.401 0.281 0.360

Var 0.002 0.002 0.003 4.85E-04 0.001

Stress 0.090 0.083 0.104 0.068 0.063 6.95E-05
Page blocks Min 0.014 0.015 0.016 0.004 0.003

Max 0.593 0.436 0.498 0.284 0.251

Var 0.010 0.008 0.009 0.003 0.003

Stress 0.259 0.258 0.274 0.279 0.289 0.190
Letter Min 0.220 0.217 0.224 0.236 0.242
recognition Max 0.327 0.343 0.438 0.327 0.339

Var 5.33E-04 5.92E-04 0.0016 3.71E-04 5.04E-04

Stress 0.191 0.195 0.197 0.160 0.166 0.175
Image Min 0.121 0.136 0.142 0.129 0.137
segmentation Max 0.606 0.557 0.571 0.209 0.293

Var 0.005 0.006 0.005 1.91E-04 4.12E-04

Stress 0.119 0.119 0.128 0.133 0.136 0.085
Waveform Min 0.107 0.107 0.108 0.117 0.116

Max 0.136 0.145 0.159 0.170 0.160

Var 3.45E-05 4.17E-04 1.51E-04 8.83E-04 1.0622-04

Stress 0.159 0.140 0.159 0.164 0.165 0.067
MAGIC Min | 0.083 0.075 0.084 0.105 0.097
gamma
selescope Max 0.287 0.296 0.343 0.317 0.267

Var 0.003 0.002 0.003 0.001 0.002

Stress 0.043 0.044 0.044 0.029 0.028 0.012

Min 0.015 0.016 0.015 0.015 0.015
Helix

Max 0.173 0.145 0.193 0.062 0.054

Var 7.98E-04 6.54E-04 8.92E-04 7.56E-05 7.59E-05

Stress 0.088 0.089 0.095 0.095 0.093 0.056

) Min 0.061 0.064 0.058 0.063 0.064

Suwiss roll Max | 0.180 0.151 0.194 0.135 0.147

Var 6.45E-04 | 4.36E-04 | 7.37E-04 | 2.26E-04 2.74E-04

Figure 1 shows the comparison of projection quality combining the RBF technique with various ways
of selection of control points and the projection error (s#7es) values obtained by PCA is also included. Itis
evident that the smallest szress values are for the projection which was obtained by PCA as the whole data
set is projected at ones unlike methods which use the position of control points. The comparison shows
that the mean stress values are very similar and differ insignificant for combinations of RBF technique with
various selection ways with ~ 30 control points analysing all data sets.

Though the stress values are similar but the computation time varies. Figure 2 presents
mean time for eight different data sets. The results show that the mean computational time
of projection using RBF technique with ROLS algorithm is 2.4 times greater than using RBF

method with szratified (or random) selection.
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Fig. 1. Mean stress values using different techniques for eight data sets.
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Fig. 2. Mean computing time using different techniques for eight data sets.

For example, the projection of the Waveform data set is found in about 6 seconds using
RBF with ROLS algorithm and in about 1.65 seconds using RBF with szratified (or random)
selection. Fast computational time is caused by simple selection algorithms.

The visualization of the Waveform, Helix, MAGIC gamma telescope, Swiss roll data sets
when their dimensionality is reduced to two by the RBF technique combined with ROLS
and szratified selection is presented in Fig. 3. Labels and units for both axes are not presented,
because we are interested in observing the interlocation of points on a plane only. The images
show that the positions of points, obtained by RBF combined with ROLS algorithm and
stratified selection are similar to positions obtained by PCA.
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RBF, ROLS, RBF, STRATA PCA
UNIQUE (~30 cp) (~30 cp)

Waveform

MAGIC
gamma
telescope

Helix

0.012
0.0220 0.0231

Swiss roll

0.0719 0.0876 0.056

Fig. 3. Visualization of four data sets using ROLS algorithm and strazified selection.
Projection error values are shown in the bottom left.

The experiments with bigger sets of candidates (300 points) and control points
(100 points) are also carried out. The results obtained are presented in Table 3. In this
experiment, two ways are investigated: RBF technique with ROLS algorithm; RBF technique
with stratified selection. Better stress values are presented in bold. It is evident that when the
size of control points set is increasing, the szress values become smaller for both ways. Table
3 shows that RBF technique with ROLS algorithm gives smaller stress values than RBF
technique with stratified selection analysing six from eight data sets (Yeast, Letter recognition,
Waveform, Magic Gama telescope, Helix, Swiss roll). The mean stress values in these ways are
0.107 and 0.111, respectively, thus the difference is not essential.

However the computation time vary significantly for those two ways and the mean
computational time differs 8.6 times. For example, the projection of the Letter recognition
data set is found in about 35.2 seconds using RBF with ROLS algorithm and in about
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5.6 seconds using RBF with stratified selection, and the stress values are 0.21 and 0.22,
respectively. Although the RBF with ROLS algorithm with increasing number of candidates
and control points gives better stress values, but there is a trade-off between projection quality
and computation time. It can be noted that increasing number of control points does not
much influence the computation time of combination of RBF technique with szratified
selection. It can be emphasized that RBF technique with stratified selection saves the
computation time and the loss of stress accuracy is not significant comparing to RBF with
ROLS algorithm. The analysis of /mage segmentation data set has shown that szress is smaller
obtained by RBF technique with stratified selection than obtained by PCA.

Table 3. Projection error (szress) and time values for eight data sets.

RBF, ROLS, RBF,
UNIQUE (100 cp) | STRATA (100 cp)
0.178
Veast Stress 0.189
Time 29.729 0.571
Stress 0.032 0.019
Page block
wge locks Time 29.729 1.615
Lot » Stress 0.207 0.221
erter recognition Time 35.219 5.574
Ta i Stress 0.161 0.144
mage seamentation
ge segm Time 29.280 0.737
Stress 0.0950 0.103
Waveform Time 30.225 1.565
Stress
MAGIC gamma telescope - 0.0972 0.121
Time 31.923 6.428
Heli Stress 0.0176 0.0179
e Time 29.762 1.4928
Swiss roll Stress 0.065 0.071
WS Te Time 39.163 11.7306
Moan Stress 0.107 0.111
Time 31.879 3.714
Conclusions

In the paper, we have analysed dimensionality reduction by using RBF technique with
various selection ways of control points. The combinations of RBF technique with ROLS
algorithm, random and stratified selections are shown to be effective in terms of projection
error (stress). The results have shown that combinations of RBF with random and stratified
selections outperformed RBF with ROLS algorithm regarding to computation time analysing
all data sets. The mean computational time differs 2.4 times for size of 30 control points and
8.6 times for size of 100 control points. Though the stress values for RBF with ROLS
algorithm outperformed the RBF with stratified (or random) selection for the most cases but
the difference was not essential. The results have shown that the execution of RBF technique
with stratified or random selection is fast and not limited essentially in size of control points.
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It can be emphasized that the loss of projection error accuracy is not significant compared to
the computation time we save using RBF technique with szratified or random selections. We
conclude that the random and stratified selection ways are attractive for their simplicity and
they can be used instead of ROLS algorithm when dimensionality reduction task is solved.
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KONTROLINIY TASKU PARINKIMAS DIMENSIJAI MAZINTI NAUDOJANT
RADIALINE BAZINE FUNKCIJA

Kotryna Paulauskiené, Olga Kurasova
Santrauka

Siame darbe nagrinéjamas dimensijos mazinimo metodas, kuris remiasi radialiniy baziniy
funkecijy (RBF) teorija. Pradzioje randamos tik dalies duomeny aibés tasky, vadinamy
kontroliniais taSkais, koordinatés sumazintos dimensijos erdvéje, pagal kurias naudojant RBF
randamos likusiyjy duomeny aibés tasky projekcijos. Tyrime nagrinéjami jvairas kontroliniy
tasky parinkimo badai (ortogonaliyjy maziausiy kvadraty metodas, atsitiktinis ir stratifikuotas
parinkimai). Tyrimas atliktas naudojant 8 duomeny aibes. Kontroliniy tasky koordinatés
sumazintos dimensijos erdvéje randamos pagrindiniy komponendiy analizés metodu.
Tyrimo rezultatai parodé, kad assitiktinis ir stratifikuotas kontroliniy tasky parinkimas yra
efektyvs islaikant kompromisa tarp projekcijos paklaidos ir skaiciavimo laiko.

Pagrindiniai ZodZiai: dimensijos mazinimas, radialinés bazinés funkcijos, kontroliniai

taskai, didelés apimties duomeny aibés.
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