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Abstract. Population initialization is one of the important tasks in evolutionary and
genetic algorithms (GAs). It can affect considerably the speed of convergence and the quality
of the obtained results. In this paper, some heuristic strategies (procedures) for construction
of the initial populations in genetic algorithms are investigated. The purpose is to try to see
how the different population initialization strategies (procedures) can influence the quality of the
final solutions of GAs. Several simple procedures were algorithmically implemented and tested
on one of the hard combinatorial optimization problems, the quadratic assignment problem
(QAP). The results of the computational experiments demonstrate the usefulness of the
proposed strategies. In addition, these strategies are of quite general character and may be easily
transferred to other population-based metaheuristics (like particle swarm or bee colony
optimization methods).
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Introduction

Genetic algorithms (GAs) follow an analogy with the behaviour of genes in populations
of live organisms and are based on Darwinian notion of natural selection (Holland, 1975).
In the context of combinatorial optimization', the basic attributes of GAs are the
"population” of solutions and the special operators called "selection”, "crossover"
("recombination"), "mutation”, and "replacement”.

The solutions of an optimization problem correspond to (chromosomes of) individuals of
a biological system and the cost of a solution (the value of the objective function) is associated
with the fitness of an individual. Traditionally, the GAs manipulate with solutions which are
represented by strings of bits, but also other encodings (for example, the permutations of
integers) can be used for particular optimization problems. The goal is to produce better and
better solutions by applying iterative process of repeating virtual generations which consist of
the above mentioned operators. The global optimality of the obtained solutions can not be
guaranteed, however the near-optimal solutions of tolerable quality are usually found within

! Recall that a combinatorial optimization problem can be formally described by a pair (S, /), where S = {s1, 52, ..., 5i, ...} is
a finite set of feasible solutions (a search space) and £ S — R is a real-valued objective (cost) function. We suppose that f

seeks a global minimum, then the goal is to find a solution s¥ € S such that s* € §¥= {SV |s” =argmin f (S)} .
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reasonable computation time. (More thorough description of the principles of GAs can be
found in (Goldberg, 1989; Reeves, Rowe, 2001; Sivanandam, Deepa, 2008).

One of the distinctive aspects of GAs is that these algorithms always operate on a whole
population of solutions (rather than a single solution), which largely improves the chance of
seeking the high quality results. The other important advantages of GAs include: parallelism,
liability, ability to explore wider search spaces and handle complex fitness landscapes, as well
as potential of employment for a broad variety of optimization problems. Despite of this, the
GAs may also suffer some limitations, first of all, the loss of genetic variance (genetic drift),
premature convergence, stalled evolution. To try to overcome these barriers, various
conceptual enhancements have been proposed, for example, messy GAs (Goldberg et al.,
1989), parallel GAs (Cantii-Paz, 2001), hybrid GAs (memetic algorithms) (Krasnogor, Smith,
2005; El-Mihoub et al., 2000), affinity GAs (Zhao, Gao, 2007). The researchers have also
considered the fine-tuning of the parameter settings of GAs (Schaffer, 1989; Misevicius et
al., 2009), the amendment of the genetic operators (Fox, McMahon, 1991), and
introduction of other new modifications (among them, special replacement strategies (Wu, Ji,
2007), GAs with random immigrants (Cheng, Yang, 2010), diversification mechanisms to
increase  diversity (Misevicius, 2008), using micro-populations (Kazarlis, 2001),
extra/differential improvement (Drezner, Misevicius, 2013)).

It is commonly known that the efficiency of the traditional GAs depends mostly on the
standard genetic operators (selection, crossover/mutation, replacement), which are of the
explorative nature; in modern, hybrid GAs, however, more attention is to be paid rather to
the exploitative, improving operations (Misevi¢ius, Rubliauskas, 2008; Drezner, Misevicius,
2013), including the enhanced improvement procedures used to create the high quality
populations. In this paper, we propose, in particular, several simple heuristic strategies for
construction of the initials populations to see how the structure and quality of these populations
affect the resulting performance and the final results of the genetic algorithm.

The rest of this paper is structured as follows. In Section 1, some simple strategies for
creation of the initial population are discussed. Section 2 describes the implementation of
the proposed strategies for the quadratic assignment problem (QAP), along with the results
of the computational experiments. The paper is completed with concluding remarks.

1. Construction of initial populations in genetic algorithms: some simple

strategies

1.1. Random generation

In this particular case, we do not use any improvement at all. So, the genetic algorithms
starts from a pure random population.

1.2. Uniform improvement

1. 2. 1. Uniform improvement (variant 1)

In this case, the initial population is constructed in two main steps: 1) random generation (see
above), 2) improvement of the individuals. During the second step, all the existing members of the
population created in the first step undergo an improvement process. Any local-search-
methodology-based algorithm can be used for this task, for example, descent/greedy local search,
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simulated annealing, tabu search, etc. The time spent for the improvement is essentially the same
for every population member, so the resultant population may be thought of as uniform like (with
respect to the fitness of the individuals, i.e. the values of the objective function), given that, during
the first step, the population is generated randomly, uniformly.

The only control parameter needed for the uniform improvement procedure is the
number of iterations (Q) of the improvement algorithm.

1. 2. 2. Uniform improvement (variant 2)

This variant of improvement is very similar to that described in previous section. The
basic distinction is that the number of improvement iterations is more or less increased to
obtain even higher quality population. We can easily regulate the improvement
time/extensity and, consequently, the quality of the population by means of a pre-defined
parameter (coefficient), C. The resulting number of improvement iterations (during the
initialization phase only) is thus equal to the product of C and Q, where Q is the standard
number of improvement iterations (see above). Note that if the time-expensive improvement
heuristics are applied, then the overall GA's execution time (or the corresponding total
number of generations) should be accordingly decreased to keep the run time fixed and also
allow a fair comparison with other variants (strategies).

This strategy seems to slightly resemble a compounded approach proposed in (Drezner,
2005), where several starting populations (sub-populations) are maintained and the
individuals of every distinct population are independently pre-improved.

1.3. Non-uniform improvement

The remaining strategies differ from the above ones in the sense that they try to construct
(at least virtually) the non-uniform like populations (in terms of the fitness of the individuals)
instead of the uniform like populations. Four simple heuristic construction rules are briefly
described in the subsequent sections.

1. 3. 1. Non-uniform improvement (variant 1)

Our first quite spontancous idea was to vary the computation time, i.e. the number of
improvement iterations at the population initialization stage according to an elegant rule so
that the produced individuals of the obtained population are distributed (in terms of the
individuals' fitness) according to some law (for example, similar in some sense to a normal
(Gaussian) like distribution law). With our approach, we, of course, are far from the
theoretical schemes and, instead of producing a normally-distributed population in a
straightforward way, we are speaking at most of the heuristic procedure for a conceptual
simulation of a pseudo normal distribution only. The outline of our procedure is as follows:

(a) generate the starting (preliminary) population randomly, uniformly;

i< 1;

(b) choose the ith member of the existing population and apply 7K improving
iterations (here, K'is an a priori parameter). Note: for the improvement, any local
search-based algorithm can be applied;
i< i+ 1

(c) if 7 is less than or equal to the pre-specified size of the population, P, then go to
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(b) and continue the process of the next iteration;
otherwise, the procedure is finished.

Obviously, for the (lexicographically) last (th) population member, 2K improving iterations
are applied and we may think of this member as some hero (leader) of the population.

1. 3. 2. Non-uniform improvement (variant 2)

The modified non-uniform improvement procedure is designed with the intension of a
more flexible control of the improvement process. In addition, the non-uniformity of the
population is allowed to be achieved in a more gentle way. The procedure is as follows:

(a) generate the starting (preliminary) population randomly, uniformly;

i< 1;
(b) choose the 7th member of the existing population and apply (7 + L)*K improving
iterations (here, L is a parameter);
repeat the same for the (7 + 1)th population member;
i<—i+2

(c) if 7 is less than the pre-specified size of the population, P, then go to (b) and

continue the process;
otherwise, the procedure is finished.

Note: it assumed that the procedure operates with a population whose size is an even

integer.

1. 3. 3. Non-uniform improvement (variant 3 — differential improvement)

The concept of "differential improvement” comes from (Drezner, Misevic¢ius, 2013) and
it is initially proposed by Prof. Z. Drezner during the collaborative work on the genetic
algorithms with the authors of the current paper. The heart of the concept is to perform more
extensive improvement on some selected solutions. In this paper, we have slightly adapted
the basic idea so that some pre-determined solutions are improved more than the others. The
heuristic process to achieve this effect is very simple:

(a) generate the starting (preliminary) population randomly, uniformly;

i< 1;
(b) choose the 7th member of the existing population;
if the index 7 is an odd integer, then apply M improving iterations
(M is a parameter);
otherwise, apply Af*2 improving iterations;
i<—i+1;
(c) if 7 is less than or equal to the pre-specified size of the population, P, then go to
(b) and continue the process;
otherwise, the procedure is finished.

The population members with odd indices (i =1, 3, ...) may be associated with virtual

females, the members with even indices (i = 2, 4, ...) — with virtual males (or vice versa).
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1. 3. 4. Non-uniform improvement (variant 4 — extra improvement)

In this variant, the random population is firstly created, then the population is improved
uniformly. After this, an extra improvement step takes place. The specific point here is that
only one member of the population is selected for the additional extensive improvement
(extra improvement). We follow a special rule of selection proposed by Z. Drezner in
(Drezner, Misevicius, 2013). In particular, R population members are selected at random
(with possible repetition) from the existing population. The improvement algorithm with
extra N iterations is then applied to the best selected solution. Here, R (R< P), N are
parameters of the user's choice.

All the proposed procedures, except the random generation, may be seen as some kind of
"initial burst” ("initial invasion"), where the goal is to obtain an elite population of the
outstanding quality. Such a constructive, positive invasion occurs only once before starting
the genetic process and this allows good starting conditions for the convergence speed of GA.
Remind that, in this case, local-search-based improvement heuristics are required, which
might be rather time-consuming. The compensation would be based on maintaining
compact, small-sized populations, where the population size is sacrificed for the extensive
improvement.

In Fig. 1, we have depicted the graphical representations of the fitness landscapes of the
populations obtained using different population initialization procedures. The
corresponding different character of created populations can be observed quite clearly.
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Fig. 1. Graphical illustrations of the population fitness landscapes: (a, b) random population (RAND)
and populations after uniform improvement (variant 1, variant 2) (UNIF 1, UNIF 2); (c, d)
populations after non-uniform improvement (variant 1, variant 2, variant 3) (NUNIF 1, NUNIF 2,
NUNIF 3). (The landscapes are for the quadratic assignment problem instance tai50b from the library
of the QAP instances QAPLIB (Burkard et al., 1997) (also see Section 2.1).

The population size is equal to 20)
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2. Computational experiments with the quadratic assignment problem

2.1. The quadratic assignment problem

In order to evaluate the behaviour of the proposed procedures more thoroughly, the
computational experiments have been carried out on the quadratic assignment problem
(Koopmans, Beckmann, 1957; Cela, 1998). The QAP is formulated as follows. Given two
matrices A = (j)x» and B = (bu)x,» and the set I'T of permutations of the integers from 1 to 7,

find a permutation 77 € IT that minimizes

2(7) =D > b ya - (1)

i1 j=1

The QAP is a typical example of combinatorial optimization problems, where solutions are
represented by permutations (i.e. S=11={7| 7= (n(1), M2), ..., "n)), i) € {1, ..., n},
i=1,.,n i) #nj),ij=1,.., ni#j})* and the objective function is described according
to the above formula. The QAP is used in many applications (including computer-aided
design, factory/office layout design, network design). It also serves as a suitable platform for
testing various optimization methods and the hybridized genetic algorithms are among the
most successful heuristic techniques for this problem (Drezner, 2003; Misevicius, 2004).

In our experiments, we have used the benchmark QAP instances from the QAP library
QAPLIB (Burkard et al., 1997) (also see the web site http://www.seas.upenn.edu/qaplib). In
particular, the following representative types of the instances were used:

a) random instances (in QAPLIB, they are denoted by tai20a, tai25a, tai30a, tai35a,
tai40a, tai50a, tai60a, tai80a, and tail00a);

b) real-life like instances (these instances are denoted by tai20b, tai25b, tai30b, tai35b,
tai40b, tai50b, tai60b, tai80b, tail00b, and tail50b).

These types of instances have been proposed by E. Taillard in (Taillard, 1991) and
(Taillard, 1995). The instances tai*a are generated randomly according to the uniform
distribution, while the instances tai*b are artificially designed in such a way that they look
like the real-world problems from practical applications.

2.2. The genetic algorithm used in the experiments
The high-level description of the genetic algorithm is presented in Fig. 2.

2 In this case, the solution (permutation) 7 can be directly associated with a chromosome so that the single solution element

7(7) corresponds to a gene occupying the jth locus of the chromosome.
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Genetic Algorithm

0: create the initial population of fixed size P, depending on the population
initialization option (variant);

1: randomly choose R population members and (try to) extra improve

the best one out of R selected members;

select parents 7, 7' from the existing population;

apply crossover to #f and 7', get the offspring #";

improve the offspring #', get the improved offspring 7#'";

if the offspring #"' is worse than both its parents (7' and 7'),

then it is extra improved;

update (replace) the population;

if the current generation number is less than the

pre-defined maximum number of generations, G, then go to 1,

otherwise the algorithm is stopped.

o WN

< o

Fig. 2. High-level description of the genetic algorithm

The algorithm components and parameters used in the experiments are as follows.

i) The population initialization option (variant) can take on seven different values: 0
(random population); 1 (uniform improvement (variant 1)); 2 (uniform improvement
(variant 2)); 3 (non-uniform improvement (variant 1)); 4 (non-uniform improvement
(variant 2)); 5 (non-uniform improvement (variant 3 — differential improvement)); 6 (non-
uniform improvement (variant 4 — extra improvement)). In all the cases, the population size
(P) is very compact and it is equal to 20.

ii) The improvement algorithm is the fast iterated tabu search (ITS) based on the
enhanced tabu search (Misevicius, 2005). The run time of the ITS algorithm is controlled
by the parameters Q, 7, where Q is the number of iterations (search extensity) and 7is the
depth of the search (search intensity). The value of 7is kept fixed in our experiments; it is
equal to 7* for the tai*a instances and 7 for the tai*b instances (this is due to more apparent
hardness of the random instances).

The ITS algorithm uses random mutations (perturbations), where mutations are applied
every 7iterations. The variable tabu tenure is applied; more precisely, the tabu tenure varies
in an oscillating (vwvvv) manner. The amplitude of the oscillations is equal to
huign — buwtn, where bg*n, hipw*n are the maximum and minimum values of the tabu
tenure (here, pigh, Diow (0 < hipw < hiigs < 1) are the coefficients and 7 denotes the problem size).

iii) The number of generations, G, of the genetic algorithm is equal to max{30,n/2}.
(This is true for the case of the random initial population. For the remaining variants, the
decreased value of G is applied so that the total run time is kept approximately the same.)

iv) For parent selection, a rank-based selection rule (Tate, Smith, 1995) is applied. The
cohesive like crossover operator similar to the one in (Drezner, 2003) is used. One offspring
is generated at each generation.

v) The extra improvement is applied in two cases. Firstly (also see (Drezner, Misevicius,
2013)), R population members are randomly chosen from the current population and the
best one out of R selected members is (attempted to be) extra improved (in our case, we use
the extra number of 5Q improvement iterations). Secondly (also see (Misevicius,
D.Rubliauskas, 2008)), after producing and improving the offspring, it is checked if the new
offspring is better than its parents; if this is not the case, then the offspring is again tried to
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be additionally improved by allowing an increased number of improvement iterations (in this
case, we use the extra number of 10Q iterations). For determining the values of the parameter
R, see Section 2.3.

vi) At the population update (replacement) phase, we apply a steady state, elitist strategy,
where the best offspring replaces the worst population member. In addition, if the diversity
of the obtained population is lost, then a special restart mechanism is used (for more details,
see (Misevicius, 2008)).

2.3. The results of the experiments

We have experimented with the following algorithm variants: RAND — random generation
(a variant without using any improvement of the initial population); UNIF 1 — uniform
improvement (variant 1 (standard variant)); UNIF 2 — uniform improvement (variant 2
(extended variant)); NUNIF 1 — non-uniform improvement (variant 1); NUNIF 2 — non-
uniform improvement (variant 2); NUNIF 3 — non-uniform improvement (variant 3
(differential improvement)); NUNIF 4 — non-uniform improvement (variant4 (extra
improvement)). The algorithms were programmed in Pascal (using Free Pascal compiler).
The experiments were performed on a personal computer with an Intel Pentium 3 GHz
single-core processor.

As a performance criterion for the algorithms, we use the average relative deviation (5 ) of
the obtained solutions from the best known (pseudo-optimal) solution (BKS). It is defined by

the formula: & =100(Z —2°)/z° [%], where Z is the average objective function value over 10

runs of the algorithm and 2° denotes the best known value (BKV) of the objective function.
(BKVs are from QAPLIB.)

Firstly, we experimented with the different values of the parameter R to determine the
most preferable values for the further experimentation. We used the following values of R: 1,
2,3,4,5,6,7,8,9,10, 11, 13, 15, 20. We used the extra improvement variant for the
population initialization with the corresponding values. The values of the parameters Q, N
were as follows: Q =5, V= 10Q. The results of the experiments are presented in Tables 1, 2
(only results for R=1, 2, 3, 5, 10, 15, 20 are represented).

In Fig. 3, we graphically summarize the results from Tables 1, 2 and illustrate the
influence of the values of the parameter R on the quality of solutions for the random and
real-life like instances. It can be seen that the trend curve is parabolic shaped, but, on the
whole, the quality of the obtained solutions is quite insensitive to the values of R. However,
we have observed that, for the random instances, the higher values of R (R = 10, 15, 20) are
preferable to the lower ones. (We used R = 15 in the further experiments.) At the same time,
we could not reveal a preferable region of good values of R for the real-life like instances. We
have decided to use R =2 in the further experimentation. The motivation was that, firstly,
we have obtained the best results with this particular value during the preliminary
experiments; secondly, our intension was to pay more attention to the explorative capabilities

of the algorithm by allowing less "discriminative" selection rule using smaller value of R.
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Table 1. Results of the experiments with different values of the parameter R (1)

Instance? BKV g [Time
Rl | R2 | R3 [ RS | R10 | R15 | R=20 |[(sec)*
Tai20a 703482 0.000 | 0.000 | 0.000 | 0.000 | 0.000 [ 0.000 | 0.000 3
Tai25a 1167256] 0.000 | 0.000 | 0.037 0.073 0.037 0.037 0.052 4
Tai30a 1818146 0.041 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 12
Tai35a 2422002 0.087 0.051 0.073 0.033 0.018 0.018 0.000 23
Tai40a 3139370|| 0.187 | 0.263 0.283 0.248 0.248 0.229 0.247 50
Tai50a 4938796/ 0.463 0.519 0.523 0.457 | 0.520 0.505 0.485 125
Tai60a 7205962 0.519 0.501 0.422 | 0518 0.451 0.492 0.516 260
Tai80a 13499184 0.544 0.494 | 0.584 0.577 0.565 0.540 0.559 90
Tail00a 21052466]  0.430 0.421 0.410 0.441 0.398 0.394 | 0.413 250
Average]| 0252 | 0250 | 0259 | 0261 | 0249 | 0.246 [ 0252 [

¥ the numeral in the instance name indicates the size of the problem; * average CPU time per run is given.

In the further experiments, we have compared the different strategies for the population
initialization (RAND, UNIF 1, UNIF 2, NUNIF 1, NUNIF 2, NUNIF 3, NUNIF 4). The
values of the parameters (Q, C, K, L, M, N) were as follows: Q=5, C=4, K=2, L =5,
M =15, N =10CQ. The results of the comparison are presented in Tables 3, 4.

Table 2. Results of the experiments with different values of the parameter R (II)

Instance BKV J Time
R=1 [ R2 | R3 | R5 | R10 | R=15 | R=20 [[(sec)
Tai20b 122455319 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.1
Tai25b 344355644 0.000 0.000 0.000 0.000 0.007 0.000 0.000 15
Tai30b 637117113 0.000 0.011 0.000 0.000 0.000 0.000 0.000 26
Tai35b 283315445|| 0.000 0.018 0.010 0.010 0.019 0.000 0.048 4
Tai40b 637250948||  0.000 0.000 0.000 0.000 0.000 0.000 0.000 6
TaiS0b 458821517 0.037 0.007 0.078 0.076 0.035 0.034 0.079 11
Tai60b 608215054]| 0.024 0.023 0.027 0.018 0.013 0.020 0.015 21
Tai80b 818415043 0.314 0.230 0.410 0.336 0.263 0.192 0.216 42
Tail00b || 1185996137 0.092 0.095 0.157 0.129 0.103 0.087 0.121 || 100
Tail50b 498896643  0.192 0.201 0.178 0.258 0.275 0.355 0.352 || 480
Average]| 0.066 [ 0.059 | 0.086 [ 0.083 | 0.072 [ 0.069 | 0.083 ]
0.265 0.100
0.260 4 0.090 A
0.255 0.080 - —
0.250 0.070 A —_ -
0.060 4
0.245 A 0.050 A
0.240 A 0.040 A
0.235 T T T T T T T T T T 0.030 T T T T T T T T T T
1 2 3 4 5 7R8 9 10 11 13 15 20 1 2 3 4 5 6 7R 9 10 11 13 15 20

Fig. 3. Graphical illustrations of the behaviour of the influence of the parameter R on the quality of

solutions: (a) random instances (tai*a), (b) real-life like instances (tai*b).

(Deviation (‘5 ) is averaged over all the random and real-life like instances, respectively)
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We were also interested in the long-time behaviour of the most promising algorithm
variants (UNIF 2, NUNIF 2), so we have performed more extensive experiments, where the
run time is roughly doubled. We experimented with the procedure NUNIF 2 for the both
types of instances and the procedure UNIF 2 for the tai*b instances. In particular, we have
examined the following variants: Q = 10 (UNIF 2!, NUNIF 2'), Q = 11 (UNIF 2%, NUNIF
2%), Q=12 (UNIF 25, NUNIF 2%, Q=15 (NUNIF 24, Q=20 (NUNIF 2%), Q=25
(NUNIF 2°), Q = 30 (NUNIF 27). The values of the parameters K, L were also increased (we
used K'= 4, L = 10) and the number of generations was accordingly decreased. In Tables 5,
6, we present the obtained results, which demonstrate a very satisfactory effect of using the

non-uniform improvement (variant NUNIF 2) and the extensive uniform improvement
(variant UNIF 2).

Table 3. Results of the experiments with different initial populations (I)

K] Time
Instance BKV
RAND | UNIF 1 | UNIF 2 [NUNIF 1| NUNIF 2 | NUNIF 3 | NUNIF 4 ||(sec.)
Tai20a 703482 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5
Tai25a 116725¢| 0.073 0.000 0.000 0.000 0.000 0.000 0.000 8
Tai30a 1818144 0.002 0.000 0.000 0.000 0.000 0.000 0.000 18
Tai35a 2422002|| 0.000 0.000 0.000 0.048 0.000 0.000 0.000 34
Tai40a 3139370 0.300 0.299 0.201 0.201 0.196 0.256 0.260 79
Tai50a 493879¢| 0.507 0.369 0.407 0.378 0.415 0.366 0.411 190
Tai60a 7205962 0.426 0.406 0.448 0.412 0.425 0.424 0.422 390
Tai80a 13499184/ 0.539 0.519 0.488 0.524 0.484 0.483 0.514 130
Tai1l00a 21052466 0.421 0.348 0.373 0.374 0.377 0.385 0.343 370
Average]] 0252 [ 0216 | 0213 [ 0215 | 0211 [ 0213 [ 0217 |

Table 4. Results of the experiments with different initial populations (II)

S Time
Instance BKV
RAND | UNIF 1 | UNIF 2 |[NUNIF 1 | NUNIF 2 | NUNIF 3 | NUNIF 4 ||(sec.)
Tai20b 122455319 0.000 [ 0.000 [ 0.000 [ 0.000 [ 0.000 [ 0.000 [ 0.000 1.6
Tai25b 34435564¢| 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 2.2
Tai30b 637117113 0.000 | 0.001 [ 0.000 | 0.000 | 0.000 | 0.000 [ 0.012 4.0
Tai3sh 283315445 0.000 | 0.000 | 0.029 | 0.033 | 0.000 | 0.010 | 0.037 6
Tai40b 637250948 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 [ 0.000 9
TaiS0b 458821517] 0.109 | 0.001 | 0.003 | 0002 | 0.001 | 0.002 | 0003 [ 16
Tai60b 608215054 0.005 | 0.003 [ 0.005 | 0.007 | 0.010 [ 0.005 0.008 || 32
Tai80b 818415043 0.088 | 0293 | 0.107 | 0.169 | o0.108 | 0.187 | 0276 | 62
Tail00b || 1185996137 0.035 | 0.045 | 0.095 [ 0.065 0063 | 0072 | 0.061 [ 150
Tail50b 498896643 0.241 | 0231 | 0206 | 0250 | 0254 | 0224 | 0235 [ 700
Average]| 0.048 [ 0.057 [ 0.045 | 0.053 | 0.044 [ 0.050 | 0.063 |

3. Concluding remarks

In this paper, some heuristic strategies (procedures) for construction of initial populations in
genetic algorithms within the context of combinatorial optimization are proposed. The
intension was to examine the behaviour of the genetic algorithm, depending on the different
ways of creation of an initial population. Three main strategies have been tested: random

generation, uniform improvement, and non-uniform improvement.
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These strategies were implemented and tested on one of the hard combinatorial
optimization problems, the quadratic assignment problem. The results obtained from the
experiments with the Taillard instances from the QAP library QAPLIB demonstrate promising
potential of using the extensified search at the early phase of initialization of population. It is
also observed (especially, for the random Taillard problems) that it is of high importance to
operate with diversified, "asymmetric" initial populations, where some members are worse
and others better.

Our proposed strategies are quite simple and universal, so they can be easily replicated and
transferred to other types of (combinatorial) optimization problems.

It might also be worthy to further investigate the other possible variations of the proposed
strategies for construction of initial populations.

Table 5. Results of the extensive experiments with the non-uniform initial populations

) Time

Instance BKV

NUNIF 2'[NUNIF 2’/NUNIF 2]|NUNIF 2‘[NUNIF 25NUNIF 2{NUNIF 27||(sec.)
Tai20a 703482 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1
Tai25a 116725¢| 0.000 0.000 0.000 0.000 0.000 0.000 0.000 14
Tai30a 1818144 0.000 0.000 0.000 0.000 0.000 0.000 0.000 37
Tai35a 2422002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 7
Tai40a 3139370/  0.099 0.105 0.117 0.096 0.155 0.098 0.106 159
Tai50a 4938794 0.324 0.332 0.303 0.281 0.333 0.316 0.239 390
Tai60a 7205962 0.233 0.299 0.306 0.258 0.282 0.345 0.340 800
Tai80a 13499184 0.403 0.403 0.458 0.433 0.439 0.418 0.404 265
Tail00a 21052466 0.292 0.308 0.280 0.285 0.285 0.280 0.277 750

Average]| 0.153 | 061 | 0163 [ 0.150 | 0.166 | 0.162 | 0.152 ]

Table 6. Results of the extensive experiments with the uniform and non-uniform initial populations

5 Time
Instance BKV
UNIF 2' [ UNIF 2? | UNIF 2° [NUNIF 2'[NUNIF 2’|NUNIF 23[NUNIF 24|((sec.)
Tai20b 122455319 0.000 [ 0.000 | 0.000 [ 0.000 | 0.000 [ 0.000 [ 0.000 3.2
Tai25b 344355646 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 [ 0.000 45
Tai30b 637117113 0.000 | 0.000 | 0.000 [ 0.000 | 0.000 | 0.000 [ 0.000 8.0
Tai35b 283315445 0.000 | 0.000 [ 0.000 [ 0.000 | 0.000 | 0.000 [ 0.000 [ I2
Tai40b 637250948 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 [ 20
Tai50b 458821517 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 [ 35
Tai60b 608215054 0.000 | 0.000 [ 0.000 | 0.000 [ 0.000 | 0.000 | 0.000 [ 68
Tai80b 818415043|] 0.007 | 0.003 [ 0.001 [ 0.001 0.000 | 0.001 0.000 [[ 130
Tail00b || 1185996137] 0.012 | 0.009 [ 0.000 | 0.011 0.002 | 0.000 | 0.000 [[310
Tail50b 498896643 0.046 | 0.020 | 0.017 [ 0.038 0026 | 0.037 | 0025 1450
Average]| 0.007 | 0.003 [ 0.002 [ 0.005 0.003 0.004 0.003 ||
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KAI KURIU PRADINIU POPULIACIJUU KONSTRAVIMO STRATEGIJU
(PROCEDURU) GENETINIUOSE ALGORITMUOSE TYRIMAS
Alfonsas Misevic¢ius, Dovilé Kuznecovaité
Santrauka

Pradiniy populiacijy formavimas yra svarbus etapas evoliuciniuose ir genetiniuose
algoritmuose. Nuo suformuotos populiacijos kokybés priklauso algoritmy konvergavimo
greitis ir gaunami rezultatai. Siame straipsnyje ir nagrinéjamos kai kurios galimos pradiniy
populiacijy konstravimo strategijos (procediiros), siekiant issiaiskinti, kaip gali buti
jtakojamas genetiniy algoritmy (GA) efektyvumas, priklausomai nuo pradiniy populiacijy
konstravimo procediiry ypatumy. Yra pasitlytos kelios euristinés nesudétingos populiacijy
formavimo procediiros, tai: atsitiktinis generavimas, tolygusis pagerinimas, netolygusis
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(diferencijuotasis) pagerinimas. Sios procediiros i$bandytos, sprendziant viena i$ sudétingy
kombinatorinio optimizavimo uzdaviniy — kvadratinio paskirstymo uzdavinj. Gautieji
cksperimenty rezultatai liudija, jog GA rezultaty kokybé gali bati padidinta, panaudojant
(vietoje atsitiktinio generavimo) tolygiojo ir/arba netolygiojo (diferencijuotojo) populiacijos
pagerinimo procediras. Pasitlytos strategijos yra gana universalaus pobudzio ir galéty bati
pritaikytos kituose populiacijy panaudojimu besiremianéiuose euristiniuose metoduose (pvz.,

daleliy ar bic¢iy spie¢iy optimizavimo metoduose).

573



