COMPUTATIONAL SCIENCE AND TECHNIQUES Publisher: Klaipéda University
Volume 5, Number 1, 2017, 541-559 heep://journals.ku.lt/index.php/CST

© Klaipéda University, 2017 Online ISSN: 2029-9966
DOI: 10.15181/csat.v5i1.1361

VARIATIONS ON AGENT-ORIENTED PROGRAMMING

Dalia Baziuké, Natalija Jus¢enko
Department of Computer Science and Statistics, Klaipeda University, Lithuania

Abstract. Occurrence of the agent paradigm and its further applications have stimulated the
emergence of new concepts and methodologies in computer science. Today terms like multi-agent
system, agent-oriented methodology, and agent-oriented programming (AOP) are widely used. The
aim of this paper is to clarify the validity of usage of the terms AOP and AOP language. This is
disclosed in two phases of an analysis process. Determining to which concepts, terms like agent,
programming, object-oriented analysis and design, object-oriented programming, and agent-
oriented analysis and design correspond is accomplished in the first phase. Analysis of several
known agent system engineering methodologies in terms of key concepts used, final resulting
artifacts, and their relationship with known programming paradigms and modern tools for agent
system development is performed in the second phase. The research shows that in the final phase of
agent system design and in the coding stage, the main artifact is an object, defined according to the
rules of the object-oriented paradigm. Hence, we conclude that the computing society still does not
have AOP owing to the lack of an AOP language. Thus, the term AOP is very often incorrectly
assigned to agent system development frameworks that in all cases, transform agents into objects.

Keywords: agent, term, concept, methodology
Introduction

During the last decade the idea of agent-oriented (AO) software engineering has been
exploited intensively. The appearance of new methodologies, tools, and concepts has led to
the emergence of new terms like agent, AO programming, agent-oriented programming
(AOP) language, and so on. An analysis of scientific publications, educational literature,
and technical papers in the AO research area shows that scientific publications offer
contradicting definitions of terms such as AOP and AOP language. For example, on the
one hand, there are several works making claims about AOP languages (Shoham, 1993;
Bordini et al., 2005; 2009; Wang, Chan, 2000; Boissier et al., 2011), whereas, on the other
hand, there is a list of works stating that this type of language does not exist (Akbari, 2010;
Juneidi, 2004). In the book by Bordini et al. (2005:113) the authors state that "the CLAIM
language is supported by a dedicated platform, called SyMPA <...>, implemented in Java...".
Yet, a few lines below this, on the same page, a contradicting claim is made that "the main
difference of SyMPA with respect to other mobile agents platforms is that it supports
agents implemented in CLAIM, an agent-oriented programming language while the other
platforms support agents implemented using mainly object-oriented languages (e.g. Java in
most cases).” Such misinterpretation of terms confuses the readers, causes

misunderstanding of research results, and complicates application of accumulated

http://journals.ku.lt/index.php/CST/issue/view/1

Baziuké, Justenko, Variations on Agent—Oriented Programming

knowledge to further research in the area. Thus, the aim of this paper is to clarify the
validity of using the terms AOP and AOP language. To fulfill this aim an analysis process
consisting of two phases is carried out. The following three sections cover the first phase of
the analysis, which is devoted to determining to which concepts terms like agent,
programming, object-oriented (OO) analysis and design, object-oriented programming
(OOP), and AO analysis and design correspond. Section 3 focuses on the concept of an
agent and discusses normal agents and intelligent agents. Section 4 compares the concepts
of agent, object, and expert system and presents a chronology of OO languages, OO
software engineering (OOSE) methodologies, AO software engineering (AOSE)
methodologies, and AO development tools. Section 5 covers the second phase of the
analysis process, in which an analysis of several known agent system engineering
methodologies in terms of key concepts used, final resulting artifacts, and their relationship
with known programming paradigms and modern tools for agent system development is
carried out. Finally, Section 6 presents our concluding remarks.

1. Main concepts discussed and their interrelation

To deal with complex algorithms systematically or to develop complex software, a
suitable programming language is needed. According to Iverson, who is the creator and
developer of the APL language, “... such a programming language should be concise, precise,
consistent over a wide area of application, mnemonic, and economical of symbols; it should
exhibit clearly the constraints on the sequence in which operations are performed; and it
should permit the description of a process to be independent of the particular
representation chosen for the data” (Iverson, 1967). APL is the base for many modern
programming languages. Since the early 1960s, several programming paradigms have
emerged. A programming paradigm is assumed to be a specific style of computer
programming (Fig. 1), which is definitely concerned with designing, writing, debugging,
and maintaining the source code of computer programs. Four fundamental paradigms are
known: functional, procedural, logical, and object-oriented (Gabbrielli and Martini, 2010;
Goel, 2010). Each programming paradigm is expressed by one or more programming
languages defined by their own strict notation. Notation is the grammar by which the
syntax of a particular programming language is set. In modern software engineering, a
grammar is usually expressed as a set of graphical elements that are even exploited in the
carly stages of system analysis and design. Moreover, some authors (Bergenti at al., 2004;
Isern et al., 2011) treat programming languages as obligatory tools to support a particular
software engineering methodology. The concepts of objects and OO methodology can be
mentioned as an example. In the early 1960s the idea of OOP emerged. Kay, the pioneer of
the OOP paradigm, declared that at that time there was no programming language that
supported the OO paradigm, and that his initial idea of an OO language included only
messaging, local retention and protection and hiding of state-process, and extreme late-
binding of all things. The Simula programming language designed by Dahl and Nygaard
appeared to be the first OOP language (Fig. 2) and had a strong influence on the rest of the
OOQOP languages. Now, after fifty years there are several programming languages that use
objects as the main construct in the programming language. Thus, there is no doubt that

542

Computational Science and Techniques, Vol 5, No 1, 2017, 541-559

OOQOP exists. As another example, consider the concepts of agents and AO methodology.
These concepts require that an AOP language should exist (Fig. 3). It appears that Shoham
(1993) introduced such a language. Since then, a variety of research papers have been
published in the field and much effort has been devoted to developing the so-called AOP
paradigm. How productive these efforts were, and whether AOP really exists is the focus of
the discussion in this paper.

is defined by

[Programming Language]

(Raion)—
is expressed by

[Programmmg Paradlgm

// \\ is typical data structure

[Style of Programmmg]— is—

can be can be can be can be

Functional Procedural [Object—Oriented]

Fig. 1. Map of main concepts discussed.

The next section focuses on the notion of agents and discusses agent-related definitions
in order to enable the distinction between the levels of abstraction that agents and objects
have. This is discussed in more detail in Section 5.

3. Agent-related definitions

The topic of agents is a “hot” one in scientific literature with the discussion mainly
concentrating on different understandings and definitions of the terms agent and intelligent
agent. We attempt to express the point of view of some well-known scientists in the current
field and present the more or less agreed-upon definitions of the terms agent and intelligent
agent.

One can argue that two major viewpoints coexist in agent-based research with the strong
one being the so-called artificial intelligence (AI) viewpoint, and the weak one being the
software engineering (SE) viewpoint. According to the strong viewpoint (Jennings and
Wooldridge, 1998; Wooldridge, 2009) an agent is proactive, intelligent, and must perform
conversations instead of doing client-server computing. The weaker one states that an agent
is a software component with internal (either reactive or proactive) threads of execution,
and which can be engaged in complex and stateful interaction protocols. Moreover, a
multi-agent system can be viewed from the Al or SE perspective. On one hand, a multi-
agent system is defined as a society of individual (Al software) agents that interact by
exchanging knowledge and by negotiating with each other to achieve either their own
interest or some global goal. On the other hand, it can be viewed as a software system made
up of multiple independent and encapsulated loci of control (i.e., agents) interacting with
cach other in a specific application context (Shehory and Sturm, 2004).

543

Baziuké, Justenko, Variations on Agent—Oriented Programming

The metaphor of an agent is very convenient as a design view, where agents provide a
“natural and elegant means to manage complexity” (Luck et al., 2003). The complexity of
many systems arises from the interactions between components of the system, and an agent
paradigm provides a natural way of modeling such interactions (Boman and Holm, 2004;
Luck et al., 2003). Thus, agents can be viewed as a design metaphor used to design software
systems with components that interact with each other and abstractly may be understood as
individual goal secking items. Jennings (2000) states that agents provide designers and
developers with a way of structuring an application around autonomous, communicative
elements, leading to the construction of software tools and infrastructure to support the
design metaphor.

Thus, software agents are referred to as a design metaphor to ensure that a complex
system has the desired behavior with the components expressing certain delegated tasks on
the one hand, and on the other, as autonomous components that support effective behavior of

a system in a dynamic and open environment.

3.1. Normal Agents

According to Norvig and Russell (2010), an agent is anything that can be viewed as
perceiving its environment through sensors and acting upon that environment through
effectors. Franklin and Graesser (1996) defined an agent as a system situated within and
part of an environment that senses the environment and acts on it over time, in pursuit of
its own agenda and so as to effect what it senses in the future. According to Wooldridge
and Jennings (1995) an agent is a computer system that is situated in some environment
and that is capable of autonomous action in this environment in order to meet its design
objectives. All three definitions agree on two things. First, an agent is something situated in
some environment and interacting with it, and second, it is able to perform autonomous

action. Autonomy is the main factor that characterizes agency.

3.2. Intelligent Agents

When does an agent become intelligent? Similar to the notion of an agent, it is hard to
find a single exact definition strictly describing the term “intelligent agent”. For example, in
(Sycara et al., 1996) an agent is considered to be intelligent if it is taskable', network-
centric?, semi-autonomous, persistent3 R trustworthy to users, anticipatory4, active?,
collaborative®, flexible’, and adaptive®. The list of properties for an intelligent agent is very
ambitious and none of the existing agent systems meet these criteria completely. In

(Jennings and Wooldridge, 1998; Wooldridge, 2009) an intelligent agent is described as an

! Able to take direction from humans and other agents.

? Distributed and self-organising, mobility may be desirable in some cases.
3 Capable of unattended operation for long periods.

4 Anticipate user’s needs for information using various user models.

> Can initiate actions where relevant.

© Able to interact with humans and other agents.

7 Can handle heterogeneity of agents and information resources.

8 Adjust to changing user needs and task environments.

544

Computational Science and Techniques, Vol 5, No 1, 2017, 541-559

agent having the capabilities of reactivity’, proactiveness'’, and social ability"'. In addition,
intelligent agents have properties ascribed to “normal” agents.

3.3. Agent Environment

An agent acts in its environment, which is usually described using the notion of property.
The most exploited example of environmental states in the literature is cold, warm, hot
when discussing an agent used to implement a thermostat (Booch, 1994; Krél and Nguyen,
2008; Poole and Mackworth, 2010; Wooldridge, 2009). The environment may be in any
of a finite set E of discrete instantaneous states, E = {e,e",... /.

For example, in the case of intelligently adapting an online system for educational
purposes (Baziukaite, 2006), the modeling has to be done around the entities of a Learner
and a Teacher. Depending on this, in a very general case, two subsets of £ have to be
defined, one for the Teacher Agent and the other for the Learner Agent:

E=-E:R E,, (1)

where Er = {enes,... fand E; = {er,e,... } are discrete sets of finite instantaneous states for
environments £7and Ej, respectively.

To achieve the final state, the goal state, the agent has to perform a r#n. During the run,
the agent takes certain actions that transform the agent's current state into the next one
defined in the sequence (Baziukaité, 2007b; Wooldridge, 2009). Usually, a run, 7, of an

agent in an environment is a sequence of interleaved environment states and actions

2. Sl 2)

r:ep —* ey o
where ¢, 7 =1...n are the finite states in the environment E and a;, 7 =1...n are the actions
that transform a state in the environment.

The next section compares the concepts of agent, object, and expert system and presents
a chronology of OO languages, OOSE methodologies, AOSE methodologies, and AO
development tools. This is done to ascertain development tendencies of AO notation and
determine in which software engineering steps the concept of agent is currently being

applied.

4. Agents, Objects, and Expert Systems

Are there any distinctions between agents and objects, and also between agents and
expert systems that can be or should be highlighted? While dealing with various sources and
applying the agent-based approach as a design metaphor, one can certainly stress that an
agent is not the same as an object, and an agent is not the same as an expert system.
According to (Booch, 1994; Booch et al., 2007; Jacobson, 1992) objects are used in

? Agents are able to perceive their environment and respond in a timely fashion to changes that occur in it in order to
satisfy their design objectives.

10 Agents are able to exhibit goal-directed behavior by taking the initiative in order to satisfy their design objectives.

1 Agents are capable of interacting with other agents (and possibly humans) in order to satisfy their design objectives.

545

Baziuké, Justenko, Variations on Agent—Orientm’ Programming

software development to implement abstract data structures. An object is an element that
has a state and a number of operations (behavior) to either examine or change its state. In
the coding stage, OOP languages provide extensive syntactic and semantic support for
object handling. An object is the foundation of OOP, and is a fundamental data type in
OOQOP languages.

The main features distinguishing an agent from an object (Petrie, 2001; Shoham, 1993;
Wooldridge, 2009) are the embodiment of a stronger notion of autonomy than that which
objects have; the ability to decide for themselves whether to perform an action on request
from another agent; and the capability of flexible (reactive, proactive) behavior, about
which the standard object model has nothing to say. A multi-agent system is inherently
multi-threaded in that each agent is assumed to have at least one thread of control.

Similarly, one could argue that agents are not the same as expert systems (Wooldridge,
2009) because classic expert systems (Jackson, 1998; Russell and Norvig, 2010) are not
coupled to any environment in which they act, but instead act through users as the
“middleman”; they are not capable of reactive or proactive behavior; and are not generally
equipped with social ability in the sense of cooperation, coordination, and negotiation.
Features of intelligent agents are really attractive, with some features, like proactiveness,
social ability, and so on, making them capable of coping with a higher level of abstraction
than objects.

Intelligent agents have found their place in different types of applications: industrial
applications (process control, manufacturing, and air traffic control), commercial
applications (Baig, 2012) (information management, business process management, and
electronic commerce), medical applications (Isern et al., 2010) (patient monitoring and
healthcare), and entertainment (games, interactive theatre, and cinema) (Jennings and
Wooldridge, 1998). The application field for intelligent agents is being extended to
educational systems, particularly through application of the paradigm in virtual learning
environments, see, for example (Aylett and Luck, 2000; Baziukaite, 2006, 2007a, 2007b;
Evers and Nijholt, 2000; Hobbs, 2002; Liu and Chen, 2005, Jurado et al., 2012).

After considering the literature on AOSE, one gets the impression that the story of
OOSE is being repeated. Yet, on closer inspection (Fig. 2 and Fig. 3), it is clear that the
situation is different. In the OO case, real programming languages that supported objects as
their main language construct were created and presented in the beginning. Simula
(introduced in 1966) and Smalltalk (introduced in 1971) are examples of such languages.
Moreover, some twenty years later (Fig. 2) OO modeling languages have been introduced.
This possibly has a connection with the production of software, which appeared more
demanding as the software systems became more complex and the task of designing such
systems required tools supporting the object notation even at the software design level. The
first OO modeling language was introduced in 1987 almost at the same time as commercial
C++ compilers appeared on the market (Fig. 2). It took a further ten years for these OOSE
methodologies to reach maturity (in 1997) and have since been standardized as the Unified
Modeling Language (UML).

In the AO paradigm, the opposite situation is observed (Fig. 3). Since 1991, AO
modeling languages/methodologies have been introduced, with the process of introducing
new ones still ongoing. Nevertheless, in 2012 there is still no unified (at the standard level)

546

http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Abstract_data_type

Computational Science and Techniques, Vol 5, No 1, 2017, 541-559

AO modeling language. It must be noted, that most of the known AO modeling languages
make use of UML models to express the essence of their own model. Recently, some
authors have mentioned the need for an AOM standard, which is seen as a key tool for
AOSE to become an industrial standard in software design. But at the same time there is
still no AOP language'. Thus, it turns out that while computer systems are becoming more
and more complex, the task of designing them is becoming more and more sophisticated.
This is the reason why the scientific computing society is searching for more efficient
software modeling tools. Currently it seems that the concept of agents coming from the Al
field has found valid application in the SE environment. The agent concept with a higher
level of abstraction than an object allows reflection of the behavior of complex systems in a
more natural way. However, in the final implementation stage of agents in program code,
each agent is transformed to an object.

(Y
5 %, réc, xroﬁ%, %
2, %y, % %, . 2, §
“% %, < e % %, %2 Y
73 %
lQ&G 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 19'?.2 1983 1984 1985 1986 1187 1988 1989 1990 1991 1992 1993 1994 1995 1936 1997 1998 1999 2000 2001 éUOZ
)
.
NG
R S
\2 Q\O [e)
3 o <
& o D &
& O o "
Q& ov\ o & ¢
¥ &
o L S §
o <
R
P

Fig. 2. The timeline depicts the year of introduction of various OOP languages (above the timeline)
and OOSE methodologies (below the timeline).

12 Shoham, in 1993, introduced the AGENT-0 language, with a LISP based interpreter and the main
language construct being a list. Later some agent development frameworks such as JACK, JADEX, and JADE
were introduced. These are Java based tools, with the main language construct being an object. These simply
transform the higher level of abstraction of the agent to the lower level of an object.

547

Baziuké, Justenko, Variations on Agent—Oriented Programming

g
k7 % %
6‘4‘, e, (\0(;
% [AL %,

% 4% Y4

9, % B G "9,

% o
K (‘740 5 %, % %, %,
%, % < z
< % 7 Z, c
%, % % %, % %M. Y, %, Y,
s, 2, <, %, >3 ", Gy AN Ze %) %
% 2, %, Q 54 %, e, %, 2 e, 8 %,
. %, % %, % Gy A % "4, %, %,
%, Ds, "9, 7 3 e o4, %, Y, %, % U, 4
Y, 4, & R Ty T, 0%, e Rk, X, % &
%, s S Yo, T4, g % %% %, %, % A S R
% S, KN Yo A, 2 Ty %, % 4-7,9 %, %, Ry 47‘7J~ 40@
> 0'94, % S " 04 '7470 e Ty S Wt -7 ‘704:% % 4 Yo % %
0, - ‘¢ 4 o -
?‘790 %, %, %, % RN 4% o % %% 4 %,) % 2
% 8 G, % O < 9 e 00«\ C 59 oo Y e %,
1%1 1992 1993 1994 1995 1996 19'97 1998 1999 Z(*)U 2001 Zl’éz 2003 2004 2005 2006 2007 2008 2009
% + 1% ¥ % % % ¥ ¥ ¥ P ¥ X ¥ ¥
N o N

& 8 &
R S © &
Sl &

N & Y&
&& « vg‘v &
o O N
?.0 W &

Fig. 3. The timeline depicts the year of introduction of various AOSE methodologies (above the
timeline) and AO development frameworks (below the timeline).

The next section is devoted to the comparative analysis of several known agent system
engineering methodologies in terms of key concepts used, final resulting artifacts, and their
relationship with known programming paradigms and modern tools for agent system
development. This is done to understand the respective levels of abstraction for agents and
objects.

5. Agent-Oriented Design

In this section a comparison of several well-known AOSE methodologies is presented.
The selection of methodologies was done based on the availability of documentation
describing each one, the familiarity of the agent community with it, and whether it has
been developed over an extended time period, according to feedback from users other than
the developers of the methodology. Another important factor was whether the
methodology has an implementation into the code stage and whether there any tools
developed to support the analysis, design, and implementation stages of the methodology.
Based on these criteria we chose nine methodologies, Tropos, MaSE, Gaia, PASSI,
Prometheus, Moise+, INGENIAS, AGR, and ASPECS (Table 1).

For example, the Tropos methodology (Mylopolous and Castro, 2000; Bresciani et al.,
2004; Tropos, 2012) is intended to cover early and late requirements, architectural design
and detailed design, and also to interface with agent programming platforms. It is based on
a UML-type language and methodology, but includes the notion of a goal in the highest
level of system design. It should be noted that UML is a standardized general-purpose
modeling language in the field of OO software engineering (Booch et al., 2007). The tools
supporting the Tropos methodology are Si*Tool, TAOMA4E, GR-Tool, T-Tool, DW-Tool,
OpenOME, DESCARTES, and SecTro. Only TAOMA4E supports code generation
according to JADEX (Jadex, 2012), which allows programming intelligent software agents
in XML and Java and can be deployed on different kinds of middleware such as JADE

548

http://sistar.disi.unitn.it/index.php/Main_Page
http://selab.fbk.eu/taom/
http://troposproject.org/tools/grtool/index.php
http://www.disi.unitn.it/~ft/ft_tool.html
http://troposproject.org/tools/dwtool/index.htm
http://www.cs.toronto.edu/km/openome/
http://www.isys.ucl.ac.be/descartes/index.php
http://sectro.securetropos.org/
http://jadex-agents.informatik.uni-hamburg.de/xwiki/bin/view/About/Features
http://jade.tilab.com/

Computational Science and Techniques, Vol 5, No 1, 2017, 541-559

(Jade, 2012), a software framework fully implemented in the Java language. Java is a
general-purpose, concurrent, class-based, OO language that is specifically designed to have
as few implementation dependencies as possible (Gosling et al., 2005). Thus, it can be
concluded that an object is the main artifact derived from the design process.

The Multiagent System Engineering (MaSE) methodology (DeLoach, 2004a, 2004b;
DeLoach et al., 2001; DeLoach and Wood 2001) was originally developed for modeling
complex agent based systems. This methodology is based on what is referred to as the
Belief-Desire-Intention (BDI) paradigm, but also uses some basic models that are common
to OO design methodologies. A supporting tool is agentTool (DeLoach and Wood, 2001;
DeLoach, 2001; agentTool III, 2012), which is a Java-based graphical development
environment.

Gaia (Woodridge et al., 2000) was specifically developed for the task of analysis and
design of agent-based systems by Wooldridge, Jennings, and Kinny. This methodology is
applicable to a range of multi-agent systems and is founded on the view of a multi-agent
system as a computational organization consisting of various interacting roles. Gaia allows
switching systematically from a statement of requirements to a design (moving from
abstract to increasingly concrete concepts). It borrows some terminology and notions from
OO analysis and design, but provides an agent-specific concept that helps to understand
and model complex systems. The overall process of the design of a multi-agent system is
divided into two stages: analysis and design. Analysis and design can be thought of as the
process of developing increasingly detailed models of the system to be constructed.
Methodology is supported by Jade - Java Agent DEvelopment Framework (Jade, 2012).

PASSI is a step-by-step requirement-to-code methodology for designing and developing
multi-agent societies, integrating design models and concepts from both OO software
engineering and artificial intelligence approaches using the UML notation (Cossentino,
2005). As UML is an OO modeling language the main artifact from the design process in
PASSI is also an object. The supporting tool, AgentFactory (Agent Factory, 2012) provides
a set of supporting kits that are mainly based on OO languages.

The Prometheus methodology supports, but is not limited to, the design of BDI systems.
The lowest level of design leads to the code, but this needs to be modified to the
programming paradigm being targeted (Padgham and Winikoff, 2005). The tools
supporting Prometheus are PDT (Padgham et al., 2008) and JACK. The latter supports
code generation to Java.

The Moise+ methodology (Hiibner et al., 2002) follows the organisational model for
multi-agent systems based on notions like roles, groups, and missions. The supporting tool
is Jason, a platform for the development of multi-agent systems developed in Java (Jason,
2012).

INGENIAS methodology (Fuentes-Fernandez et al., 2010) develops its models
according to the steps of the Rational Unified Process (RUP). The INGENIAS
Development Kit (IDK, 2012) facilitates the development of multi-agent systems by
supporting the INGENIAS methodology. The development kit is written in Java, so the
lowest level needs to be supported by an OO implementation platform.

The AGR methodology is based on the three key notions of an agent, group, and role
(Ferber et al., 2003). In addition, the Gaia methodology was proposed for use in filling the

549

http://en.wikipedia.org/wiki/Multi-agent_systems

Baziuké, Justenko, Variations on Agent—Orientm’ Programming

roles and relating them to the general structure. The MadKit tool (Madkit, 2012) was built
on the AGR organizational model. It is a modular and scalable multi-agent platform
written in Java.

The ASPECS methodology provides a step-by-step guide from requirements to code
allowing the modeling of a system at different levels of detail through refinement
(Cossentino et al., 2010). UML is used as the base modeling language. The AO solution
needs to be adapted to the chosen OO implementation platform. Supporting tools are
Janus, Madkit, and Jade. Janus (Janus, 2012) is a multi-agent platform fully implemented
in Java.

Table 1 gives the general steps of the nine methodologies compared and allows
comparison of key concepts used to express a variety of models applied in each particular
methodology. The structure of Table 1 is as follows: the first column denotes the steps that
persist in each methodology. We see that two steps expressing analysis and design are
common to all of them. Other rows in the table show models that constitute the analysis
and design steps for all methodologies. Each model is followed by a list of key notions
giving us a better insight into the level of detail achieved in creating each model, and
highlighting similarities between methodologies. The last row in the table shows the
relationship of the methodologies with known programming paradigms and modern tools
for agent system development.

Table 1. Comparison of various AO design methodologies.

1 2 3 4 5 6 7 8 9 10

(%)

;

< | Tropos | MaSE Gaia passt | Promethet | ypice ING]SENIA AGR | ASPECS

:f s

L

=
Early Analysis Analysis System System Structural - System
Requireme | Phase Stage Requireme | Specificatio | Specificatio Requirem
nts; nts Model; | n n; ents

o |Late Agent Functional Analysis

%\ Requireme Society Specificatio

S |nts Model n
. Actor| * Capturing [¢ Roles | ®* Domain | ¢ Defining | * Individual | ® Use Case | * Groups | * Domain
Modeling | Goals Model Description | Functionali | Level definition Identificat | Requirem
key key key key ty key key ion ents
concepts: | concepts: concepts: | concepts: key concepts: concepts: key Descriptio
actor system goal, | role, use case, | concepts: role, use case | concepts: | n
J requiremen | activity, functional | functionalit | abstract diagram, group key
Dependenc | t, goal | responsibil | description |y role, global | role structure concepts:
y Modeling | hierarchy ity, . Agent | descriptor, plan . diagram, use case,
key * Applying | permissio | Identificati | use case | * Social | Interaction | role, functional
concepts: Use Cases n on scenario Level Definition | interactio | descriptio
interdepend| key . key key key ns, n
ency, actor,| concepts: Interactio | concepts: concepts: concepts: dependenc | ¢ Problem

13 Can be seen as extension of PASSL.

550

Computational Science and Techniques, Vol 5, No 1, 2017, 541-559

1 2 3 4 5 7 8 9 10
goal, plan,| use case, | n model stereotyped role, link interaction | y Ontology
resource sequence of | key UML * Collective | diagram, . Descriptio

events concepts: package Level interaction | Definition | n
¢ Refining | interactio | Role key protocol of key
Roles n between | Identificati concepts: . Organizati | concepts:
key roles, on compatibili Organizatio onal ontology,
concepts: protocol key ty n High- | Structure | class
role, concepts: constraint, | Level and | key diagram
associated sequence group Low-Level | concepts: |
task diagram, specificatio | key Cheeseboar | Organizati
responsibili n, role concepts: d on
ty, scenario . Social | organizatio | Diagram, Identificat
. Task Scheme n diagram group, ion
Specificatio key * Tasks and | agent, role | key
n concepts: Goals . concepts:
key global goal, | Definition | Decompos | role,
concepts: global plan, | key ition of | interactio
use case, goal concepts: Organizati | n, context,
capability, decomposit | task, goal, | onal use case
agent ion, role Structure | diagram
* Domain sequence, key .
Ontology choice, concepts: | Interactio
Description parallelism, sub- ns and
key preference componen | Role
concepts: order t Identificat
class . ion
diagram, Describin | key
agent g concepts:
interaction Organizati | behavior,
. Role onal abstract
Description activities role, class
key key diagram
concepts: concepts: | ¢ Scenario
class organizati | Descriptio
diagram, onal n
communica sequence key
tion, diagram, concepts:
interagent group, sequence
dependency role, diagram,
¢ Protocol message, role,
Description playing a | interactio
key role, n
concepts: leaving a | o Role
sequence role, Plan
diagram, creation of | key
communica group, concepts:
tion entering a | activity
protocol group diagram,
. goal
Definition | (requirem
of Roles'* | ent), task
key * Capacity
concepts: | Identificat
role, ion
interactio | key
n concepts:
class
diagram,
role

M s suggested that the Gaia methodology be used to define roles (Ferber et al., 2003).

551

Baziuké, Justenko, Variations on Agent—Orientm’ Programming

1 2 3 4 5 6 7 8 9 10
behavior
Architectur | Design Design Agent Architectur | Deontic - - Agent
al Design; | Phase Stage Implement | al Design; | Specificatio Society
Detailed ation Detailed n Design;
Design Models Design Implemen
Code tation;
- Models Deployme
20 Deploymen nt
A t Model
. Goal| * Creating | © Agent | * Agent | © Agent | * Defining | - * Solution
Modeling | Agent Model Structure acquaintanc | Obligations | Environme Ontology
key Classes key Definition | e and nt Descriptio
concepts: key concepts: | key Diagram Permissions | Definition n
plan, concepts: agent concepts: key key key key
resource, agent class, | type, class concepts: concepts: concepts: concepts:
softgoal conversatio | agent diagram agent obligation, | internal concept,
*Plan n instance . Agent | descriptor, permission, | and predicate,
Modeling | © * Services | Behavior interaction, | role, external action,
key Constructi | model Description | event mission, application, class
concepts: ng key key * Shared | global goal | event, task diagram
UML Conversatio | concepts: concepts: Data d Agent N
activity ns service activity Objects Definition Communi
diagram key . diagram, key key cation
* Capability| concepts: Acquainta | statechart concepts: concepts: Ontologic
Modeling coordinatio | nce Model | ¢ Code | data source, role, task al
key n protocol key Reuse 00 . Descriptio
concepts: . concepts: Library techniques Componen n
individual | Assembling | communic | key * System ts key
capabilities, | Agents ation link | concepts: Overview Definition concepts:
social key class Diagram key communi
capabilities | concepts: diagram, key concepts: cation,
o Agent| agent activity concepts: component conversati
Interaction | architecture diagram, agent, diagram on, class
Modeling | * System associated event, . diagram
key Design code shared data Deploymen . Role
concepts: | key . Code | object t Definition Behavior
UML concepts: Completio | key Descriptio
sequence deployment n Baseline Interaction concepts: n
and activity] , number, key Diagram deployment agent task,
diagrams, | type and concepts: key diagram, agent
object location of source code | concepts: locations, action,
agent . interaction, number of statechart,
Deploymen | protocol agents activity
t . diagram
Configurati | Refinement * Protocol
on of Descriptio
key Capabilities n
concepts: key key
allocation concepts: concepts:
of agents events, interactio
interactions n,
, data communi
. Agent cation,
Overview scenario,
Diagram sequence
key diagram
concepts: .
capability, Organisati
event flow, on
task flow, Dependen

552

Computational Science and Techniques, Vol 5, No 1, 2017, 541-559

plan cies
descriptor, Descriptio
event n
descriptor, key

data concepts:
descriptor, capacity,
data service,
dictionary class
diagram

. Role
Constrain
t
Identificat
ion

key
concepts:
concurren
<y,
scheduling
s class
diagram

.
Holarchy
Design
key
concepts:
agent,
holon,
holonic
cheese
board
diagram,
dynamic
definition
rules,
holon
governme
nt
descriptio
n

¢ Holon
Architectu
re
Definition
key
concepts:
class
diagram,

d Code
Reuse

key
concepts:

. Code
Productio
n of
Organizati
ons and
Roles

key
concepts:
code

553

Baziuké, Justenko, Variations on Agent—Orientm’ Programming

1 2 3 4 5 6 7 8 9 10

Organizati
ons and
Roles

Unit Tests
key
concepts:
test cases

. Code
Productio
n of
Holons
key
concepts:
holon
code

¢ Holon
Unit Tests
key
concepts:
test cases

* JACK . * JADE . C++ | *JACK * Jason . IDK | * Madkit * Janus
resulting AgentTool resulting based resulting resulting (INGENIA | resulting resulting
artifacts: resulting artifacts: systems artifacts: artifacts: S artifacts: artifacts:
Java artifacts: Java * JADE Java Java Developme | Java Java
language objects in | language resulting language language nt Kit) language language
objects oor objects artifacts: objects objects resulting objects objects
languages objects in artifacts:
oor objects in
languages oor

languages

Implementation

Keeping in mind the comparison above (Table 1) and referring back to Shoham’s work
(1993), we conclude that currently, agent is still a higher level concept than object owing to
the lack of an AOP language.

6. Conclusion

Through this paper, we set out to share our thoughts on the validity of using terms like
agent, AO design methodology, and AOP, while keeping an eye on OO design. The main
motivation for carrying out this analysis was the numerous scientific publications
presenting AOP tools, even going so far as to call them languages. The purpose of this
paper was to find an answer to the question: does AOP really exist?

Analysis of the concepts (Section 1) has shown that programming is concerned with
designing, writing, debugging, and maintaining the source code of computer programs. To
produce source code, one of four available programming paradigms (logical, functional,
procedural, and object-oriented) must be applied, supported by appropriate programming
languages, in which predicates, functions, procedures or objects are implemented as the
main basic units of the programming language.

Results of the agent-related definitions’ analysis (Section 3) and those from comparisons
of the concepts of agents and objects (Section 4) and their evolution process, allow us to
conclude that agent is a concept with a higher level of abstraction than that of an object.

554

Computational Science and Techniques, Vol 5, No 1, 2017, 541-559

Comparison of the evolution process of these concepts allowed us to formulate the
hypothesis that in the implementation stage the object remains the basic unit.

The comparative analysis of AO methodologies shows that one of the main goals of the
implementation stage is to transform agents into objects. A variety of tools has been
developed for this purpose in order to bridge agents to the OO paradigm. This implies that
no true AOP language currently exists.

In recalling the main goal of this paper, it is a mistake to refer to these tools as AOP
languages as they do not correspond in full to the programming concept, and should be
rather called an AO development frameworks.

References

Agent Factory, 2012. Agent Factory home page,
http://www.agentfactory.com/index.php/Main_Page (last access July 20, 2012).

agentTool III, 2012. agentTool III Homepage, http://agenttool.cis.ksu.edu/ (last access
July 02, 2012)

Akbari, O.Z., 2010. A survey of agent-oriented software engineering paradigm: Towards its
industrial acceptance. Journal of Computer Engineering Research, 1(2), 14-28.

Aylett, R., Luck, M., 2000. Applying Artificial Intelligence to Virtual Reality: Intelligent
Virtual Environments. Applied Artificial Intelligence 14(1), 3-32.

Baig, Z.A., 2012. Multi-agent systems for protecting critical infrastructures: A survey.
Journal of Network and Computer Applications 35, 1151-1161.

Baziukaite, D., 2006. Approach to an Adaptive and Intelligent Learning Environment. In:
Elleithy, K., Sobh, T., Mahmood, A., Iskander, M., Karim, M. (Eds.), Advances in
Computer, Information, and Systems Sciences, and Engineering, Proceedings of IETA
2005, TeNe 2005 and EIAE 2005. Springer, XV, pp. 399-406.

Baziukaité, D., 2007a. Learner oriented methods to enhance capabilities of virtual learning
environment, Doctoral Dissertation. Vytautas Magnus University, Kaunas.

Baziukait¢, D., 2007b. Investigation of Q-learning in the context of a virtual learning
environment. Informatics in Education 6, 255-268.

Bergenti, F., Gleizes, M.P., Zambonelli, F., 2004. Methodologies And Software
Engineering For Agent Systems: The Agent-oriented Software Engineering Handbook.

Springer.
Boissier, O., Bordini, R.H., Hiibner, J.F., Ricci, A., Santi, A., 2011. Multi-agent oriented
programming with JaCaMo. Science of Computer Programming,

d0i:10.1016/j.5cic0.2011.10.004.

Boman, M., Holm, E., 2004. Multi-agent systems, time geography, and microsimulations.
In: Olsson, M.O., Sjstedt, G. (Eds.), Systems Approaches and their Application,
Chapter 4. Kluwer Academic, pp. 95-118.

Booch, G., Maksimchuk, R.A., Engle, M.W., Young, B.J., Conallen, J., Houston, K.A,,
2007. Object-Oriented Analysis and Design with Applications, 3rd ed. Addison Wesley
Professional.

Booch, G., 1994. Object-Oriented Analysis and Design with applications. Addison-Wesley
Pub.Co., NewYork.

555

http://www.agentfactory.com/index.php/Main_Page
http://agenttool.cis.ksu.edu/
http://www.google.lt/search?hl=lt&tbo=p&tbm=bks&q=inauthor:%22Federico+Bergenti%22
http://www.google.lt/search?hl=lt&tbo=p&tbm=bks&q=inauthor:%22Marie-Pierre+Gleizes%22
http://www.google.lt/search?hl=lt&tbo=p&tbm=bks&q=inauthor:%22Marie-Pierre+Gleizes%22
http://www.google.lt/search?hl=lt&tbo=p&tbm=bks&q=inauthor:%22Franco+Zambonelli%22
http://www.google.lt/search?hl=lt&tbo=p&tbm=bks&q=inauthor:%22Franco+Zambonelli%22

Baziuké, Justenko, Variations on Agent—Orientm’ Programming

Bordini, R.H.; Dastani, J. M.; Dix, A.E. Fallah-Seghrouchni (Eds.), 2005. Multi-Agent
Programming: Languages, Platforms and Applications Vol. I, Springer, 2005.

Bordini, R.H.; Dastani, M. J.; Dix, A.E. Fallah-Seghrouchni (Eds.), 2009. Multi-Agent
Programming: Languages, Tools and Applications Vol. II, Springer, 2009.

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A., 2004. TROPOS: an
agent-oriented software development methodology. Auton. Agents Multi-Agent Syst. 8,
203-236.

Cohen, P.R., Levesque, H.J., 1990. Intentions Choice with Commitment. Artificial
Intelligence 42, 213-261.

Cossentino, M. 2005. From Requirements to Code with the PASSI Methodology. In:
Henderson-Sellers, B., Giorgini, P. (Eds.), Agent-Oriented Methodologies. Idea Group
Inc.

Cossentino, M., Gaud, N.,- Hilaire -V., Galland, S., - Koukam, A., 2010. Aspecs: an
Agent-Oriented Software Process for Engineering Complex Systems - How to Design
Agent Societies under a Holonic Perspective. Journal for Autonomous Agents and
Multi-Agent Systems (JAAMAS) 20(2), 260-304.

DeLoach, S.A., 2001. Analysis and Design using MaSE and agentTool. In: Proceedings of
the 12th Midwest Artificial Intelligence and Cognitive Science Conference, Oxford OH,
March 31 - April 1, 2001. pp. 1-7.

DeLoach, S.A., 2004a. The MaSE methodology. In: Bergenti, F., Gleizes, M.P.,
Zambonelli, F. (Eds.), Methodologies and Software Engineering for Agent Systems: The
Agent-oriented Software Engineering Handbook. Kluwer Academic Publishers, pp. 107-
125.

DeLoach, S.A., 2004b. The MaSE methodology. Methodologies and Software Engineering
for Agent Systems. Multiagent Systems, Artificial Societies, and Simulated
Organizations 11, Part IT, 107-125.

DeLoach, S.A., Wood, M.E., Sparkman, C.H., 2001. Multiagent system engineering.
International Journal of Software Engineering and Knowledge Engineering 11(3), 231-
258.

DeLoach, S.A., Wood, M.F., 2001. Developing Multiagent Systems with agentTool. The
Seventh International Workshop on AgentTheories, Architectures, and Languages
(ATAL-2000), July7-9.

Dignum, V., 2004. A Model for Organizational Interaction: Based on Agents, Founded in
Logic. University of Utrech, Utrech, The Netherlands.

Evers, M., Nijholt, A., 2000. Jacob-Ananimated instruction agent in virtual reality. In:
Advances in Multimodal Interfaces - ICMI 2000, Proc. Third International Conference
on Multimodal Interfaces, 526-533.

Franklin, S., Graesser, A., 1996. Is it an Agent, or just a Program?: A Taxonomy for
Autonomous Agents. In: Proceedings of the Third International Workshop on Agent
Theories, Architectures, and Languages. Springer-Verlag, UK, pp. 21-35.

Ferber, J., Gutknecht, O., Michel, F., 2003. From agents to organizations: an
organizational view of multi-agent systems. In: Giorgini, P., Miiller, J., Odell, J. (Eds.),
4th International Workshop on Agent-oriented Software Engineering IV, AOSE 2003.
Springer Berlin/Heidelberg, Melbourne, Australia, p. 214-230.

556

http://www.aspecs.org/images/Jaamas10.pdf
http://www.aspecs.org/images/Jaamas10.pdf
http://www.aspecs.org/images/Jaamas10.pdf

Computational Science and Techniques, Vol 5, No 1, 2017, 541-559

Fuentes-Ferndndez, R., Garcia-Magarifo, 1., Gdmez-Rodriguez, A.M., Gonzédlez-Moreno,
J.C., 2010. A technique for defining agent-oriented engineering processes with tool
support. Eng. Appl. Artif. Intell. 23, 32-444.

Gabbrielli, M., Martini, S., 2010. Programming Languages: Principles and Paradigms.
Springer-Verlag, London.

Goel, A., 2010. Computer Fundamentals. Pearson Education.

IDK, 2012. IDK home page, http://grasia.fdi.ucm.es/main/?q=en/node/127 (last access
July 20, 2012)

Iverson, K.E., 1967. A Programming Language. John Wiley and Sons, Inc.

Gosling, J., Joy, B., Steele, G., Bracha, G., 2005. The Java Language Specification, 3rd ed.
Addison-Wesley.

Hobbs, D.L., 2002. A Constructivist Approach to Web Course Design: A Review of the
Literature, International Journal on E-Learning, April-June, 60-65.

Hiibner, J.F., Sichman, J.S., Boissier, O., 2002. MOISE+: towards a structural, functional,
and deontic model for MAS organization. In: Castelfranchi, C., Johnson, W.L. (Eds.),
First International Joint Conference on Autonomous Agents and Multiagent Systems,
AAMAS 2002. ACM Press, Bologna, Italy, pp. 501-502.

Isern, D., Sdnchez, D., Moreno, A., 2010. Agents applied in health care: a review.
International Journal of Medical Informatics 79, 145-166.

Isern, D., Sédnchez, D., Moreno, A., 2011. Organizational structures supported by agent-
oriented methodologies. The Journal of Systems and Software 84, 169-184.

Jackson, P., 1998. Introduction To Expert Systems. Addison Wesley.

Jacobson, I., 1992. Object-Oriented Software Engineering. Addison-Wesley.

Jade, 2012. Jade project home page, http://jade.tilab.com/, (last access July 20, 2012).

Jadex, 2012. Jadex project home page,
http://jadex-agents.informatik.uni-hamburg.de/xwiki/bin/view/About/Overview, (last
access July 20, 2012).

Janus, 2012. Janus project homepagc, http://www.janus—project.org/Horne, (last access
November 13, 2012).

Jason, 2012. Jason home page, http://jason.sourceforge.net/wp/, (last access July 23, 2012).

Jennings, N.R., 2000. On Agent-Based Software Engineering. Artificial Intelligence 117(2),
277-296.

Jennings, N.R., Wooldridge, M.]., 1998. Applications of Intelligent Agents. In: Jennings,
N.R., Wooldridge, M.J. (Eds.), Agent Technology: Foundations, Applications, and
Markets, 1998. Springer, pp. 3-28.

Juneidi, S.J., 2004. Toward programmining paradigms for agent oriented software
engineering. In: Proc. IASTED Conf. on Software Engineering, 2004, p.428-432.

Jurado, F., Redondo, M. A., and Ortega, M., 2012. Blackboard Architecture to Integrate
Components and Agents in Heterogeneous Distributed elLearning Systems: An
Application to Learning to Program Journal of Systems and Software, 85, p. 1621-1636

Krol, D., Nguyen N.T., 2008. Intelligence Integration in Distributed Knowledge
Management. IGI Global.

Liu, Z., Chen, B., 2005. Model and Implement an Agent Oriented E-Learning System. In:
Proceedings of the 2005 International Conference on Computational Intelligence for

557

https://www.google.lt/search?hl=lt&client=firefox-a&hs=s3y&rls=org.mozilla:en-US:official&sa=X&ei=w04NUMCtLPDa4QTC78nWCg&ved=0CEsQBSgA&q=Fuentes-Fern%C3%A1ndez,+R.,+Garc%C3%ADa-Magari%C3%B1o,+I.,+G%C3%B3mez-Rodr%C3%ADguez,+A.M.,+Gonz%C3%A1lez-Moreno,+J.C.,&spell=1
https://www.google.lt/search?hl=lt&client=firefox-a&hs=s3y&rls=org.mozilla:en-US:official&sa=X&ei=w04NUMCtLPDa4QTC78nWCg&ved=0CEsQBSgA&q=Fuentes-Fern%C3%A1ndez,+R.,+Garc%C3%ADa-Magari%C3%B1o,+I.,+G%C3%B3mez-Rodr%C3%ADguez,+A.M.,+Gonz%C3%A1lez-Moreno,+J.C.,&spell=1
https://www.google.lt/search?hl=lt&client=firefox-a&hs=s3y&rls=org.mozilla:en-US:official&sa=X&ei=w04NUMCtLPDa4QTC78nWCg&ved=0CEsQBSgA&q=Fuentes-Fern%C3%A1ndez,+R.,+Garc%C3%ADa-Magari%C3%B1o,+I.,+G%C3%B3mez-Rodr%C3%ADguez,+A.M.,+Gonz%C3%A1lez-Moreno,+J.C.,&spell=1
http://grasia.fdi.ucm.es/main/?q=en/node/127
http://en.wikipedia.org/wiki/Bill_Joy
http://java.sun.com/docs/books/jls/index.html
http://java.sun.com/docs/books/jls/index.html
http://jade.tilab.com/,
http://jason.sourceforge.net/wp/,

Baziuké, Justenko, Variations on Agent—Orientm’ Programming

Modelling, Control and Automation, and International Conference on Intelligent
Agents, Web Technologies and Internet Commerce, CIMCA-IAWTIC 05, pp. 859-864.

Luck, M., McBurney, P., Preist, C., 2003. Agent Technology: Enabling Next Generation
Computing, A Roadmap for Agent-based Computing. AgentLink, England.

Madkit, 2012. Madkit homepage, http://www.madkit.org/ (last access July 20, 2012)

Mylopoulos, J., Castro, J., 2000. Tropos: A Framework for Requirements-Driven Software
Development. In: Brinkkemper, J. Solvberg, A. (Eds.), Information Systems
Engineering: State of the Art and Research Themes, Lecture Notes in Computer Science.
Springer-Verlag, pp. 1-12.

Padgham, L., Winikoff, M., 2005. Prometheus: A Practical Agent-oriented Methodology.
In: Henderson-Sellers, B., Giorgini, P. (Eds.), Agent-Oriented Methodologies. Idea
Group Inc.

Padgham, L., Thangarajah, J., Winikoff, M., 2008. Prometheus Design Tool, (System
Demonstration), Proceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence (AAAI-2008), Chicago, Illinois, USA.

Petrie, Ch., 2001. Agent-Based Software Engineering. Lecture Notes in Al, Springer-Verlag,
58-76.

Poole, D.L., Mackworth, A.K., 2010. Artificial Intelligence: foundations of computational
agents. Cambridge University Press, New Yourk, USA.

Russell, S., Norvig, P., 2010. Artificial Intelligence: A Modern Approach, 3rd Edition.
Prentice Hall.

Shehory, O., Sturm, A., 2004. Agent-oriented Software engineering Methodologies. In:
AgentLink: 6th European Agent Systems Summer School, 5-9 July. Liverpool, UK.

Shoham, Y., 1993. Agent-oriented programming. Artificial Intelligence 60, 51-92.

Sycara, K., Pannu, A., Willamson, M., Dajun Zeng, Decker, K. , 1996. Distributed
Intelligent Agents. IEEE Expert 11, pp. 36-46.

Tropos, 2012. Trotos home page, http://www.troposproject.org (last access July 20, 2012)

Wang, W.-Ch., Chan, T.-W., 2000. CAROL5: An Agent-Oriented Programming
Language for Developing Social Learning Systems. International Journal of Artificial
Intelligence in Education 11, 1-32.

Wooldridge, M., Jennings, N.R., Kinny, D., 2000. The Gaia Methodology for Agent-
Oriented Analysis and Design. Journal of Autonomous Agents and Multi-Agent Systems
3(3), 205-312.

Wooldridge, M., Jennings, N., 1995. Intelligent Agents: Theory and practice. The
Knowledge Engineering Review 10(12), 115-152.

Wooldridge, M., 2009. An introduction to Multi Agent systems, 2nd ed. John Wiley &
Sons Ltd.

558

http://www.madkit.org/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Pannu,%20A..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Pannu,%20A..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Dajun%20Zeng.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Dajun%20Zeng.QT.&newsearch=partialPref
http://www.troposproject.org/

Computational Science and Techniques, Vol 5, No 1, 2017, 541-559

Dr. Dalia Baziukeé received her Master’s degree in Mathematics (numerical analysis and
systems) from Klaipéda University in 2002 and a Doctoral degree in Informatics from
Vytautas Magnus University (Kaunas) and the Institute of Mathematics and Informatics
(Vilnius) in 2007. She is currently an Associate Professor in the Department of Computer
Science, Klaipéda University and Director of the Virtual Learning Centre at Klaipéda
University, conducting work flow and activities related to distance and e-learning, and
participating in the formation of policies based on new developments establishing and
supporting flexible study forms. Her research focuses on adaptivity, intelligence, and
decision making processes in virtual learning environments, machine learning algorithms

with various applications, and data mining.

Dr. Natalija Jus¢enko received a Master of Science degree in systems analysis from the
Klaipéda University in 1998 and a PhD in Computer Science from the Vytautas Magnus
University (Kaunas) and Mathematics and Informatics Institute (Vilnius) in 2007. She is
currently working as a Lecturer in the Computer Science Department of Klaipéda
University and an Engineer in the Virtual Learning Centre at Klaipéda University. Her
research interests include topics related to software engineering with specific focus on
database systems analysis and design, and virtual learning methodologies.

559

