COMPUTATIONAL SCIENCE AND TECHNIQUES Publisher: Klaipéda University
Volume 7, 2020, 605-615 http://journals.ku.lt/index. php/CST

© Klaipéda University, 2020 Online ISSN: 2029-9966
DOI: 10.15181/csat.v7i1.2091

EFFICIENCY ANALYSIS OF BINARY SEARCH
AND QUADRATIC SEARCH IN BIG AND SMALL DATA

Kevin Hendy, Wirawan Istiono
Universitas Multimedia Nusantara
wirawan.istiono@umn.ac.id

Abstract. When doing a searching process, Binary Search is one of the classic algorithm
used in sorted data. The characteristic of this algorithm is to make a comparison of the
keywords you want to find with the start, middle, and end values of a data series. Keyword
search is done by reducing the range of start and end points to finally find the keyword you
want to search. The time complexity of the binary search algorithm is O(log,n) while the
memory capacity needed is O(1) for iterative implementation and O(log:n) for recursive
implementation. This research will develop a comparison level in binary search with
quadratic search algorithm in order to get optimal performance according to using small
amounts of data and big data. Based on the results of research conducted using 6 different
amounts of data, where each algorithm from 6 cases was repeated five times to get the average
execution time, and the results obtained that Quadratic Search get faster time than Binary
Search in the amount of data under 100,000 data. But after using more than 100,000 data,
Quadratic Search takes longer than Binary Seach to find the data. In addition to time
efficiency.

Key words: Binary Search, Performance Analysis, Binary Search Rankings

1. Introduction

Searching is a common process carried out by many people in various circles. Searching is
an activity carried out to search for objects, people, or even data that will be used to carry out
another activity. Searching can be easily done if the available data is in small amounts. If
there is a large amount of data available, the search process will become more complicated
and need more time and effort to obtain the data.

Responding the need for large amounts of data searching with the fastest possible time,
Searching algorithms was created, one of those algorithms is the Binary Search. Binary Search
is a searching algorithm that uses start, middle, and end points, and the data that will be used
must be sorted (ascending or descending). The time efficiency that generated using the
Binary Search algorithm is dependent on the amount of data that will be used, and data
position that you want to find. The more dataset, it means the more iterations that will be
performed to find the data which makes it more inefficient to use this algorithm. Therefore,
the Binary Search algorithm was developed which originally had 3 critical points (start,
middle, end) into Quadratic Search which has 5 critical points.

605

http://journals.ku.lt/index.php/CST/issue/view/1

Hendy and Istiono, Efficiency Analysis of Binary Search and Quadratic Search
in Big and Small Data

2. Searching Algorithms

Searching is a process to find out the exact location of a data. Many algorithms are used
to facilitate the searching process, such as the linear search method, the binary search method,
and the interpolation search method. Each search algorithms has an implementation method
and the requirements that must be met before searching data, and each algorithm has
different efficiency or time complexity. For using this search method, it depends on how the
data structure is used, the amount of data owned, and also the type of data that will be
searched (Mehta, 2015).

3. Binary Search

Binary Search is a fast and efficient searching technique that requires sorted data either
ascending or descending (w3schools, 2019). In data search, Binary Search uses the midpoint
as a critical point to compare the value you want to find with the value at the current
midpoint. Where the midpoint value is obtained from the addition of the start point and the
end point then divided by two. If the value being searched is different from the value at the
midpoint, there will be a displacement at 2 other critical points in one iteration (Winarno,
2018).

If the value that being searched is less than the midpoint value, then the endpoint value
will be shift into the midpoint value minus one. If the value that being searched is greater
than the midpoint value, then the start point value will be shift into the midpoint value plus
one. Shifting these two points (midpoint with start point or midpoint with ending point)
will be cause the data that needs to be searched need to have half the range of the initial
search range.

4. Binary Search Algorithm

Steps used in binary search:

e Sorting the data set that will be searched (either ascending or descending sort).

o Initiate the start point value (L) with 0, and the end point value (R) with the length
of data minus one.

e Do theiteration as long as the start point (L) is smaller than the end point (R). If the
start point exceeds the end point, stop the iteration and the data being searched is not
found.

e If the midpoint value is the same as the value being searched, then return the
midpoint position value as the answer.

o If the midpoint value is smaller than the value being searched, then change the
startpoint value to the midpoint value plus one.

e If the midpoint value is greater than the value being searched, then change the
endpoint value to the midpoint value minus one (Balogun, 2013).

The picture below that shown in Figl is a flowchart of the Binary Search algorithm
(cssimplified, 2019):

606

Computational Science and Techniques, Vol 7, 2020, 605-615

(" sTART)

7

INITIALIZE
ARRAY
NUM[10]

LOW=0
HIGH=9
FLAG=0

/ NPUTKEY /

—‘.17

MID=(LOW/HIGH)2 ‘

KEY-MMMID>— ; PRNT =Y FOUND O IAD:+1 POSITION"

\KEY<IUM[MIDI,+ HIGH = M|D1

LOW =MID + 1

_~WHLE
_~LOW<=HIGH
~ && .

-
g 4
ELAG==0—

PRINT "KEY NOT FOUND"

]
Y

STOP

Fig. 1 Binary Search Flowchart

5. Advantages and Disadvantages of Binary Search

Each algorithm has advantages and disadvantages. In this section, that will be describe the
advantages and disadvantages of Binary Search when compared to other searching algorithms
based on related research (Pandey, 2014; Kumar, 2013):

Advantages:

e Secarching big data using Binary Search is faster than using Linear Search.

e This search technique can be used in data in the form of a tree (Binary Search Tree).

Disadvantages:

e Binary Search is not suitable for use in a linked list data structure because it cannot
access data at the midpoint of the linked list.

e Not suitable for data that can be modified by the user such as adding data or deleting
data.

6. Quadratic Search
Quadratic Search is an algorithm that also uses a critical point as in Binary Search. The
difference that can be seen from the Quadratic Search algorithm compared to Binary Search

607

Hendy and Istiono, Efficiency Analysis of Binary Search and Quadratic Search
in Big and Small Data

is that in Binary Search there is only three critical points in the middle of the array. Whereas
in Quadratic Search, there are five critical points in the section of start, %4 or quarter point,
Y2 or mid-point, % or third quarter point, and the end point. Each value at the five critical
points is obtained from the formula as follows (Painthankar, 2017):

Mid = (Hi+Low)/2;
Quarter = Low + (Hi-Low)/4;
ThirdQuarter = Low + (Hi-Low) * 3/4;

After the values at the five critical points are obtained, if the data being searched is not
found in one of the five critical points, so there are four conditions that can be done to find
the data being searched. The four conditions are as follows:

e First Condition:

if (Data < array(Quarter) && Data < array(Mid)) {
Hi = Quarter-1;
}

In this first condition, if the value of the data being searched is smaller than the value of
V4 array and value of %2 array, then the largest position (Hi) of the data being searched will
be reduced in the range to % array minus one.

e Second Condition:

if (Data > array(Quarter) && Data < array(Mid)) {
Low = Quarter+1;
Hi = Mid-1

In the second condition, if the data value being searched is between the value of ¥ array
and the value of V2 array, then the smallest position (Low) of the data being searched will be
V4 array plus 1, and the largest position (Hi) of the data being searched will be 2 array minus

one.

e Third Condition:

if (Data > array(Mid) && Data < array(ThirdQuarter)) {
Low = Mid+1;
Hi = Quarter-1;

In the third condition, if the data value being searched is between the %2 array value and
the % array value, then the smallest position (Low) of the data being searched will be V2 array
plus 1, and the largest position (Hi) of the data being searched will be % array plus 1.

608

Computational Science and Techniques, Vol 7, 2020, 605-615

e Fourth Condition:

if (Data > array(Mid) && Data > array(ThirdQuarter)) {
Low = ThirdQuarter+1;

In the last condition, if the data value being searched is greater than the V% array value and
the % array value, then the smallest position (Low) of the data being searched will be % array
plus 1.

The all four conditions will continue to be repeated as long as the data being searched has
not been found at one of the five critical points, or as long as the smallest position (Low) is
not greater than the largest position (Hi). The code below is sample code of Quadratic Search

while(Low <= Hi) {
Mid = (Hi+Low)/2;
Quarter = Low + (Hi-Low)/4;
ThirdQuarter = Low + (Hi-Low) * 3/4;

if(Data == array(Mid) || Data == array(Quarter) || Data == array(ThirdQuarter)){
printf("Data Found");
break;

}

if (Data < array(Quarter) && Data < array(Mid)) {
Hi = Quarter-1;

}

if (Data > array(Quarter) && Data < array(Mid)) {
Low = Quarter+1;
Hi = Mid-1;

}

if (Data > array(Mid) && Data < array(ThirdQuarter)) {
Low = Mid+1;
Hi = Quarter-1;

}

if (Data > array(Mid) && Data > array(ThirdQuarter)) {
Low = ThirdQuarter+1;

}

7. Quadratic Search and Binary Search Analysis

For Binary serach, each iteration, the Binary Search algorithm divides the array that
contains or does not contain the data being searched into two parts. In Fig2 shown chart
overview of binary search

609

Hendy and Istiono, Efficiency Analysis of Binary Search and Quadratic Search

in Big and Small Data
n ilems
o how mo high
& n2 flems S
ow n.-ﬁ high®,
. -nditems Y
low mid high
] -
M -
] ..
! log,nsteps -
Iow high
md

Fig. 2 Chart Overview of Binary Search

For Quadratic Search iteration, the algorithm divides the array that have contains or does
not have contain the data that being searched into four parts. This division, divided into four

parts to makes the time find the data half times faster than the time required on the Binary
Search algorithm. In Fig4. Shown chart overview of quadratic search.

e

/& dem

KEY<A[MID] B& KEY<A[P1]
AT Min, m LAST

nf 1k Remg

KEY<A[MID] && KEY>A[P1]

ARST M1 MID R sk,

KEY>A[MID] &5 KEY>A[P2]

“- Apwin) & KEY<A[P1)

FST Py WD P LART
M S
} AT |
LY I
»

I:D .

Fig. 3 Chart Overview of Quadratic Search

FRST PL MDD P2, LAST

bl e ™,

610

Computational Science and Techniques, Vol 7, 2020, 605-615

8. Methodology

In this research uses Vector as a method of storing small data and big data to see the
difference in time efficiency produced by Quadratic Search and Binary Search. Vector is a
dynamic array that can be change the size of the array automatically if there is an addition or
deletion of an element in the array (Soulie, 2007; Kusnadi, 2017). Vector can be used in the
C++ programming language that provides the Standard Template Library (STL).

Standard Template Library (STL) is a set of pre-programmed data structures and
algorithms (Savitch, 2002). This Standard Template Library was created with the aim of
facilitating programmers with the most commonly used collections of functions and data
structures (Seed, 2001). In other words, the use of STL can improve time efficiency and also
the efficiency of writing code in programming. In this study, the Standard Template Library
from the C ++ programming language:

e vector< >, used to create dynamic arrays that can adjust their own size when there

are elements that are being added or removed.

e push_back(), used to add new elements to the dynamic array at the very back / last

position.

e sort(), used to sort elements in an array in ascending or descending order.

e begin(), used to get the first element in a dynamic array.

e end(), used to get the last element in a dynamic array.

9. Comparison of Binary Search and Quadratic Search Performance

To compare the performance provided by the Binary Search and Quadratic Search
algorithms, we used several test cases with different amounts of data. In each experiment, we
are using difference amount of data that will be test for six times to see the average time
efficiency that generated from binary search and quadratic search, the result from each

amount of data can be seen in Tablel, Table2, Table3, Table4, Table5 and Table6.

Tablel. Test Casel with 10 amount of data

Amoun) Number Of Iterations
. of Data Being ' Quadratic
Data Searched Binary Search Search
10 7 4 1
Trial Execution Time (second)
Binary Search Quadratic Search
1 0.275 0.254
2 0.250 0.269
3 0.266 0.218
4 0.239 0.208
5 0.226 0.223
Average 0.2512 0.2336

611

Hendy and Istiono, Efficiency Analysis of Binary Search and Quadratic Search
in Big and Small Data

Table2. Test Case2 with 100 amount of data

Amount Data Being Number Of Iterations -
Of Data Searched Binary Search Quadratic
Search
100 |7 7 3
Trial Execution Time (second)
Binary Search Quadratic Search
1 0.318 0.223
2 0.280 0.254
3 0.352 0.239
4 0.248 0.271
5 0.238 0.251
Average 0.2872 0.2476

Table3. Test Case3 with 1000 amount of data

Amount | Data Being Number Of Iterations :
Of Data | Searched Binary Search Quadratic
Search
1000 [7 | 10 4
Trial Execution Time (second)
Binary Search Quadratic Search
1 0.280 0.213
2 0.245 0.233
3 0.224 0.217
4 0.258 0.245
5 0.251 0.256
Average 0.2516 0.2328

Table4. Test Case4 with 10000 amount of data

Amount | Data Being Number Of Iterations :
Of Data | Searched Binary Search QU et
Search
10000 |7 | 14 7
. Execution Time (second)
Trial = :
Binary Search Quadratic Search
1 0.342 0.294
2 0.307 0.228
3 0.310 0.300
4 0.323 0.250
5 0.316 0.240
Average 0.3196 0.2624

612

Computational Science and Techniques, Vol 7, 2020, 605-615

Table5. Test Casel with 100000 amount of data

Amount | Data Being Number Of Iterations .
Of Data | Searched Binary Search Qimiai
Search
100000 | 7 | 17 9
. Execution Time (second)
Trial = :
Binary Search Quadratic Search
1 0.329 0.358
2 0.323 0.368
3 0.308 0.351
4 0.319 0.388
5 0.301 0.342
Average 0.316 0.3614

Table 6. Test Case6 with 999999 amount of data

Amount | Data Being Number Of Iterations .
Of Data | Searched Binary Search Ot
Search
999999 | 7 | 15 8
Trial Execution Time (second)
Binary Search Quadratic Search
1 0.287 0.402
2 0.336 0.311
3 0.352 0.440
4 0.390 0.302
5 0.359 0.414
Average 0.3448 0.3738

10. Result and Discussion

Based on the results of research conducted using 6 different amounts of data, where each
algorithm from 6 cases was repeated five times to get the average execution time, and the
results obtained that Quadratic Search get faster time than Binary Search in the amount of
data under 100,000 data. But after using more than 100,000 data, Quadratic Search takes
longer than Binary Search to find the data. In addition to time efficiency, the number of
iterations that needed by the Quadratic Search algorithm is smaller than Binary Search.

11. Conclusions and Suggestions

Based on the results of the study, it can be concluded that Quadratic Search is still more
efficient to use than Binary Search. Even so, there are still many factors that can affect
execution time besides the amount of data. Computer memory speed, RAM and memory
capacity can also affect the execution time of both the Binary Search algorithm and the
Quadratic Search algorithm.

613

Hendy and Istiono, Efficiency Analysis of Binary Search and Quadratic Search
in Big and Small Data

For future research, is suggest that the research should also pay attention to the position
factor of the data being searched. Data position at the beginning, middle, and end can
produce different results. In addition, future research can also pay attention to the number
of iterations performed to process a certain amount of data.

Acknowledgement
The authors are thankful to the Universitas Multimedia Nusantara, Indonesia which has

become a place for researchers to develop presented research.

References

Mehta, A; Saxena, A; Patel,].; Thanna, A; Review on comparison of binary search and linear
search, International Journal of Engineering Sciences & Management Research, vol. 2,
no. 10, pp. 85-89, 2015.

w3schools, Searching Techniques, [Online]. Available: https://www.w3schools.in/data-
structures-tutorial/searching-techniques/. [Accessed 15 September 2019].

Balogun, B. G; Sadiku, J. S; Simulating Binary Search Technique Using Different Sorting
Algorithms, International Journal of Applied Science and Technology, vol. 3, no. 6, pp.
67-75, 2013.

cssimplified, [Online]. Available: http://cssimplified.com/c-cpp-programming-data-
structure/design-an-algorithm-draw-a-corresponding-flow-chart-and-write-a-c-program-
for-binary-search-to-search-a-given-number-among-the-list-of-numbers-10m-dec2007.
[Accessed 15 September 2019].

Kamlesh Kumar Pandey et al, A Comparison and Selection on Basic Type of Searching
Algorithm in Data Structure, International Journal of Computer Science and Mobile
Computing, Vol.3 Issue.7, July- 2014, pg. 751-758

Verma, D; Painthankar, D. K; Optimizing the Performance of Quadratic Search using
Memorization, International Journal of Advanced Research in Computer Science , vol. 8,
no. 3, pp. 481-484, 2017.

Kumar, P.; Quadratic Search: A New and Fast Searching Algorithm (An extension of classical
Binary search strategy),” International Journal of Computer Applications, vol. 65, no. 14,
pp. 43-46, 2013.

Soulie, J.; C++ Language Tutorial, cplusplus.com, 2007.

Savitch, W.; Absolute C++, Boston: Addison-Wesley, 2002.

Seed, G. M.; An Introduction to Object-Oriented Programming in C++ with Applications
in Computer Graphics, Edinburgh: Springer, 2001.

Kusnadi, Adhi.; Perbandingan Algoritma Horspool dan Algoritma Zhu-Takaoka dalam
Pencarian String Berbasis Desktop, Ultima Computing vol. 9, no. 1, pp. 12-16, 2017.
Winarno, Michael.; Design and Development of Computer Specification Recommendation
System Based on User Budget With Genetic Algorithm, International Journal of New

Media Technology, vol. 5, no. 1, pp 25-29, 2018

614

Computational Science and Techniques, Vol 7, 2020, 605-615

K. Hendy currently study at the Universitas Multimedia Nusantara, Tangerang
Indonesia. Kevin does research in Algorithms and Data structure.

W. Istiono currently works at the Universitas Multimedia Nusantara, Tangerang
Indonesia as lecturer and researcher. Wirawan does research in Algorithms, Computer
Science and Information and applied computing.

DVE]ETAINES IR KVADRATINES PAIESKOS EFEKTYVUMO ANALIZE
DIDELIUOSE IR MAZUOSE DUOMENYSE
Kevin Hendy, Wirawan Istiono
Santrauka

Dvejetainé paieska yra klasikinis algoritmas naudojamas paieskai surasiuotuose
duomenyse. Sio algoritmo veikimas paremtas norimy raktiniy odziy palyginimu su
duomeny serijos pradzios, vidurio ir pabaigos reiksmémis. Raktiniy Zodziy paieska atlickama
sumazinant pradzios ir pabaigos tasky diapazona, kad galiausiai bty surasti norimi raktiniai
zodziai. Dvejetainés paieskos algoritmo laiko kompleksiskumas yra O(log2n) eilés, o
reikalinga atminties talpa yra O(1) eilés, kai naudojamas iteratyvus algoritmas bei O(log2n),
kai naudojamas rekursinis algoritmas. Straipsnyje pristatytas dvejetainés ir kvadratinés
paieskos algoritmy palyginimas turint tiksla pasiekti optimaly veikima mazuose ir dideliuose
duomeny rinkiniuose. Tyrimas atliktas naudojant Sedis skirtingos apimties duomeny
rinkinius. Kiekvienas algoritmas su kiekvienu duomeny rinkiniy buvo kartojamas penkis
kartus, norint gauti vidutinj vykdymo laika. Duomeny rinkiniuose mazesniuose nei 100 000
jrasy kvadratiné paieska pasirodé geriau, rezultatai gaunami greic¢iau nei taikant dvejetaing
paieska. Taciau duomeny rinkiniuose didesniuose nei 100 000 jrasy laimi dvejetainé paieska.

Pagrindiniai ZodZiai: dvejetainé paieska, veiklos analizé, dvejetainés paieskos reitingai

615

