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Abstract. This paper is focused on the Bayes approach to multiextremal optimization
problems, based on modelling the objective function by Gaussian random field (GRF) and
using the Euclidean distance matrices with fractional degrees for presenting GRF covariances.
A recursive optimization algorithm has been developed aimed at maximizing the expected
improvement of the objective function at each step, using the results of the optimization
steps already performed. Conditional mean and conditional variance expressions, derived by
modelling GRF with covariances expressed by fractional Euclidean distance matrices, are
used to calculate the expected improvement in the objective function. The efficiency of the
developed algorithm was investigated by computer modelling, solving the test tasks, and
comparing the developed algorithm with the known heuristic multi-extremal optimization
algorithms.
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1. Introduction

The Bayes approach provides the "black box" strategy for solving multiextremal problems.
Thus, there is no necessity to know derivatives of the function to be optimized. This
approach is created by J. Mockus and co-authors (1989). Since the values of the objective
functions are unknown and only anticipated, the Bayesian search strategy models these values
as realizations of the Gaussian field, using conditional information about the function from
the previous iterations for planning the next optimization step. When the new function value
is computed, the conditional information is updated. The process is terminated according to
the prescribed termination rule. The efficiency of optimization is evaluated using some
criteria. The often used criterion is the expected value of the objective function increment
during optimization. Of course, the performance of the Bayes method depends on computer
speed and memory resources. The Bayes approach is preferred for application, if computation
of the response function is related with certain costs.
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2. Bayesian optimization method

Let the continuous objective function be minimized on some compact feasible set. The
Bayes optimization method is ussually is built assuming that the values of the objective
function are realization of some random field. Note that the objective function f(X,®)

depends on a random scenario following from some probability space: @ € (Q,Z,P). Thus,
the optimization problem to be solved is minimized:
f(x,0) > milgl ,

where D € R" is a feasible set. Assume that the objective function is continuous and the
feasible set is compact.

Let us consider the iterative optimization way, where each step consists of choice of an
optimization point and calculation of the function value at this point.

After performance of # steps, let the sequence of optimization points be known:

X = (X2, %3, X4, (1)
where the function values are computed:

vk :(yl’yZ’y3,”,yk)’ (2.2)

which, in turn, are realizations of the random field:
y = f(x)= f(x,0), x* D (2.3)

For the sake of simplicity, here and hereinafter the notation of scenario @ is omitted.
It is clear that

XK =Xk, xK), (2.4)
vk = (kal’ yk) (2.5)

. k . . .
Hence, each point X* of the k™ optimization step is a function of the results from the
p p p
previous iterations:

XKt =h, (X, Y¥). (2.6)

The search of optimum is terminated according to the prescribed termination rule. The
simplest rule is to terminate the optimization after some given number of steps K.

The sequence b= (bl, b, (Xl,Yl),...,bK (X K1y Kfl)), determining the dependence of each
subsequent step (3.3) on the results of the performed steps is called an optimization method.

Ussually, the random field, given by the distribution of values of field realization is
defined at any sequence of observation points. Thus, let a sequence of random field
realizations after K steps be described by the density function
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px(Y). 27

The cost function \P(f,b) must be selected for the evaluation of quality of the

optimization process. In general, this function depends on the results of optimization steps:
lP(f,b):‘P(YK;XK):‘P(Y“, yk;XH,x"). (2.8)
Let the efficiency function satisfy the following conditions:

A. The expected value exists: |E‘P( f ,b)| <00,

B. The function \P(Y kfl, yk; X kfl, Xk) is concave with respect to the variables yk :

WY ey 1) X )2 - P R v X X+ (L) PV R vk XK )
, Va,0<a <1.

C. The function ¥(f,b) satisfies the Lipschitz condition:
Yy X X )= (Y Ryl X X ) <yt -y
D. The function ¥(f,b) is monotonically increasing:
‘P(Y'H, y XK xk)é \P(Y'H, ys XK, xk), AR
The examples of efficiency functions are as follows:
W(f,b)=min(y", y%,...y*), (2.9)
W(f,b) =min(0,min(y*, y2,...y**) - y*), (2.10)

P(f,b) =(min(0,min(y", y*,...y* ) —y*)f, p>0.

The efficiency functions are related with loss functions (Mockus,2013), for instance,
L(f,b)=min(y",y%,..,y) - min f(x).

The Bayesian optimization method must be constructed so that the expected value of the
efficiency function were minimized:

E¥(f,b)— min . (2.11)

Let us prove that the Bayesian method satisfies the recursive Bellman equation system.
Denote the conditional probability density functions:

N\ Y yE (2.12)
pXK(yk‘Yk—l): ppx ((Yk_)l): p;:() ( (Yk}:{))’k :2,3,..,K
x k1 X k1

Denote:
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UK(YK;XK):\P(YK—l’yK;xK—l’XK), (2.13)

Uk(Yk; XK. Xk+1): E(UkH(Yk, yk+1; XX, Xk+1)Yk):J'

y

k+1Uk+l(Yk’ yk+1; X k’ Xk+1)' pxk’l,xk (ykﬂykhyk+1 (2 14)

where Uk(Yk; Xk Xk+1) is the expected value of the function Uk+1(Yk, y“l; Xk, Xk+1) at the point
x**! with the condition, that the results of the previous K steps are Y kK k=12,.. K-1.

Theorem 1. Let the utdility function satisfy conditions A-D. Then the Bayesian
optimization method satisfies the system of recursive equations:

Uy (Y 0)=min B ({2, y< Jr<2), 2.15)
U(*)= min £ Ualr vt ) k=12, K -1 (2.16)

Proof- Using the properties of multiple conditional distributions, we can obtain:

E¥(f,b)=E ( K) (2.17)

= [ P) Py v =
-] 7 (LKE%‘P(YK‘l, V<) P (yK\YK-l)dyK). L A

s E., (‘I"(Y KL K lY K—l). D s (Y K—l).jY K1 _

—EL(E. (B . (wlr 1y Jver]dve)y).

We get that the optimal method in the last step minimizes this integral:

Il
—

i aamin W), i by @

Similarly, we obtain that the Kk +1 step point has to satisfy the condition:

K +1

Xopt =arg min UKH(Yk y"*l) Py M( Ky )dyk+1 (2.19)

where K =01,..,K —2. The theorem statement follows by induction .

Corollary 1. The function Uk(Yk ), k =1..,K satisfies conditions A and D.

Actually, boundedness of the function Uk(Yk) comes from condition A and expression
(2.17). The monotone decreasing and concavity of functions follows monotony and
concavity conditions of function V.

In general, the solution to this equation is rather a complicated task. Therefore, let us look

at the simplified approximate solution to this system. Let us consider utility function (2.9)
and use the approximation:
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Uk(x",Y"): min (yk,ck). (2.20)

Note that the approximation proposed satisfies conditions A-D.
In this case, the design of the Bayesian method splits into K independent optimization tasks:

Yk,xk}jykﬂ. (2.21)

k+1 H k k+1 k+1
st arg, [ minlv*, v, ol

3. Modelling by using Gaussian fields

Assume the values of the response function are realization of the Gaussian random field.
Usually, GRF is defined using a correlation function in accordance with Bochner's theorem
(Abrahamsen (1997)). In this paper, a model is considered in which Gaussian field
correlations are modelled at Euclidean distances with fractional degrees between the points in
which the objective function is calculated.

Let us consider a data set X = (Xl, X2,...,XK) consisting of different points, X;, X; € R,

X # X, i#j,1<i,j<K where the values of the response function Y = (yl, Yoreenr Y )T

are known, obtained by physical measurements, computer simulation, etc. Denote K x K
matrix of fractional degrees 8 of Euclidean distance squares among pairs of vectors by

A:[((Xi—xj)T-(Xi—Xj))élK , where X, € X , 1<i,J<K , 0<5<1. The properties of

fractional Euclidean distance matrices (FEDM) are studied by means of the kernel matrix,

defined as follows (see (Schoenberg (1935), Gower (1984), Weinberger (2004), etc.):

F=—(1-E-s")}-A-(1-s-ET), (3.1)

where SeR", s’ -E =1, Eis a vector from units and | is a unit matrix.

Geometrical ~ properties of FEDM  (see, Pozniak&Sakalauskas, JMD, 2017,
Pozniak&Sakalauskas, 2019) enable us to construct a homogeneous GRF with the mean vector

EZ(x,0)=pu-E, 3.2)
and a covariance matrix, proportional to the respective kernel matrix
cov(Z(x,w)) = -F, (3.3)

Assume that only Kk values of the objective function are calculated and using this

) ) ) C K+1 )
information the next point of optimization X ™ should be chosen. Denote the matrix of
fractional degrees of Euclidean distances between points of observations as follows:

A{((Xi 0T -(x _Xj)ﬂr' (3.4)
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4. One-Step Bayesian Optimization Techniques

Solving of the equation is a very difficult task, so let us consider the one-step Bayesian
optimization method. In each step of this method the optimization point is selected in order
to solve the problem:

X =arg min ... (min(yk+l —~ min(Yk),OXY"), k=12,..,K-1 (4.1)

where the conditional mean and conditional variance are calculated under the condition that
the function value vector (2.2) is calculated at the points (2.1):

| (1- EkT .Akl.aku)] (4.2)

yk (Xk+l) :YkT X A1:1 .(akJrl + Ek

E.-A’-E
. B . (1_ ET .Ak—l.ak+1)2 (43)
AT) =ai Al g
k+1 k+|® k+1[® k+1[% ! k
where a :le_x ,‘XZ—X ...,‘Xk—X ) , A are vectors X FEDM (3.4).

Using (4.2), (4.3), it is possible to write the conditional density of the objective function
at the point X:

_y-%0)? (4.4)
p 2B

) \/ﬂﬁk 'Sk(X).

P (yY)

After some manipulations, one can make sure that

ey (4.5)

2 o2 k+1
e 2-4%-5°(x"7)

Toz B )

= (min(y"+l -~ min(Y k),OXY k): J.:min(z = ,O)

min
B (z—y(xk*l)!z

2 o2 (gkil
) ez-ﬂ -s5(x)

‘\/Z-,B-S(Xk“)

ey ——

The latter expression can be written in the following forms:

Lin W oY (4.6)
R0 =y - 705 S e -2 0 -

Y9 -Y* R
= (Y(X) _Ymi: ) CD(IBT(X”;”J _ﬂ . S(X) . ezﬁ 52(x)
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YE-y(x) 4 z YK —y(x) (4.7)

min min

R =[ 70 | %dzdt =[ 75 o(2)dt

Assume
L ox (4.8)
DO(X)=—- |e 2dz.
(0 =—7— J

(4.9)
Corollary 2. Constants C, satisfy the conditions:

o

¢,=0,¢, =¢-(1-@(c))-—, k=01,...

Note that limc¢, — -, limc,,,—c, -0
k—o k—o0

Fig. 1 depicts: surfaces of the conditional mean, conditional variance and the expected utility
function, using K =5 values of the test function computed at randomly distributed points.

G(x,y) =+/(x—6) +(y—6) (4.10)

0 b 4 G g 10

Conditional mean Variance Function value

Figure 1. Surfaces of the conditional mean, conditional variance, and the expected utility function
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5. Bayesian optimization algorithm

The main calculation time is used to find the FEDM inverse matrix. In general, the
calculation of this matrix requires a cubic sequence of operations depending on the size of the
matrix.

In calculating the conditional mean of a random field and variance, recursive FEDM
inverting formulas can be applied:

. Afl— A’l.a.aT AL A’l.a (51)
{A a:| _ TaT'Al‘_l’a a  Al.a
a’ o0 a' - A 1
a'-At-a a'-At-a

The complexity of this algorithm is quadratic, and thus its application makes it possible to
more effectively realize the Bayesian algorithm.

Algorithm:

Step 1. Random selection of initial points. Attach the initial points to the optimization set.

Step 2. FEDM inversion of the optimization set.

Step 3. Calculating the conditional mean and variance of GRF.

Step 4. Optimization of the expected utility function by the Monte Carlo method.

Step 5. Optimization of the expected utility function by the local landing method.

Step 6. FEDM inversion using inversion formulas of block matrices.

Step 7. If the termination condition is satisfied, the Bayesian method is terminated, in the
other cases, add the point of maximum expected utility to the optimization set and repeat

step 3.

6. Computer simulation results

The effectiveness of the developed Bayes algorithms was analysed by computer modelling,
using the Monte Carlo method. The first test function (4.10), as well as Branin and Rastrigin
functions were investigated. Figs. 2-3 depicted the average convergence curve found by the
Bayesian method (BM) for optimizing test functions. The convergence curves, presented for
comparison, are obtained using the simple Monte Carlo method (MCM) and Simulated
Annealing method (SAM).

The computer simulation results show that the Bayesian method is more effective than the
known other methods for solving multidimensional problems.
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Figure 2. The result of test function (4.10)
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Figure 3. The result of Rastrigin test function
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Figure 4. The result of Branin test function
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7. Conclusions

The paper is focused on the Bayess approach to global optimization problems, based on
modelling the objective function by the Gaussian random field (GRF) and using the
Euclidean distance matrices with fractional degrees for presenting GRF covariances. A
recursive objective function optimization algorithm has been developed, aimed at
maximizing the expected improvement of the objective function at each step, using the
results of the optimization steps already performed. The efficiency of the developed
algorithm was investigated by computer modelling, solving test problems and comparing the
developed algorithm with the known heuristic multi-extremal optimization algorithms. The
results of computer modelling have shown that the developed method is more efficient than
the other known methods of global optimization. However, the algorithm developed can be
refined in future research to calculate the conditional mean and variance, using only a
fraction of the results of the experiments performed, thus allowing a reduction in computer
time.
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NAUJAS DAUGIAEKSTREMALINIU FUNKCIJU BAJESO
OPTIMIZAVIMO METODAS
Natalija Pozniak, Leonidas Sakalauskas
Santrauka

Siame straipsnyje yra nagrinéjamas daugiackstremaliniy funkcijy Bajeso optimizavimo
metodas, kuriame kaip optimizuojamos funkcijos modelis yra pasirinktas atsitiktinis Gauso
laukas (AGL) su kovariacijy matrica, i$reiskiama per trupmeniniy Euklido atstumy matricos
(TEAM) branduolio matrica. Sukurtas rekursinis optimizavimo algoritmas, kurio tikslas -
padidinti tikéting tikslo funkcijos pageréjima kickviename Zzingsnyje, pasinaudojant jau
atlikty  optimizavimo  Zingsniy rezultatais. Tikétino tikslo funkcijos  pageré¢jimo
apskai¢iavimui buvo pritaikytos salyginio vidurkio ir salyginés dispersijos israiskos, gautos
modelivojant AGL su kovariacijy matricomis, isreik§tomis per TEAM. Sio algoritmo
efektyvumas buvo tiriamas kompiuterinio modeliavimu badu. Taip pat, sukurtas algoritmas

buvo palygintas su Zinomais euristiniais daugiackstremalio optimizavimo algoritmais.
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